
Thalamus:
Closing the Mind-Body Loop in Interactive

Embodied Characters

Tiago Ribeiro, Marco Vala, and Ana Paiva

INESC-ID and Instituto Superior Técnico, Technical University of Lisbon
Av. Professor Cavaco Silva, 2744-016 Porto Salvo, Portugal

tiago.ribeiro@gaips.inesc-id.pt

{marco.vala,ana.paiva}@inesc-id.pt

Abstract. We present the Thalamus framework, which is based on
SAIBA and extends it by adding a perceptual loop. This perceptual
loop enables embodied characters to perform continuous interaction. The
framework was tested in a case study involving a NAO and an EMYS
robots. After showing that our extension works, we point out some is-
sues that were encountered during the development of the case study.
We also suggest that the definition of a formal Perception Modelling
Language (PML) based on the SAIBA framework can enable SAIBA-
compliant embodied characters to perform continuous interaction, while
still performing synchronized multimodal behavior based on BML.

Keywords: SAIBA; BML; Continuous Interaction; PML

1 Introduction

We all imagine a future with robots living around us, behaving and interacting
with humans and between themselves. But although fun to imagine, scientists
have actually been struggling to create these interactive characters that can
operate autonomously. Nevertheless, there have been great efforts in the com-
munity, and current research on interactive embodied characters (IEC) has been
taking steps towards a unified form of behavior expression. However, for contin-
uous and autonomous interaction, we need the character to be able to react to
its environment, and trigger behaviors on that environment.

In this paper we present the Thalamus framework, which abstractly closes
the loop between mind and body of an IEC. We close the loop by adding the
ability to receive perceptions from the character’s embodiment and send them
up to the mind, in order to allow for continuous interaction, while maintaining
an expressive system based on BML [9, 6].

Therefore, the two main contributions of this framework are: a) support for
any kind of embodiment, virtual or robotic; 2) acting as an abstract interface to
the character’s sensors.



2 Related Work

Our work builds on the SAIBA framework [3, 9], shown in Figure 1. SAIBA is a
representational framework for unified multimodal behavior generation. One of
the cores of SAIBA is the Behavior Modelling Language (BML) [6].

Fig. 1. The three stages of behavior generation in the SAIBA framework and the two
mediating languages FML and BML. [9, 6]

Several BML realizers have been developed throughout the community. Greta
[4] is a virtual ECA that follows the three-level architecture of SAIBA along with
BML. [5] has extended Greta’s architecture by adding the ability to communicate
with a NAO robot instead of the virtual character. They separate the Behavior
Realizer in two sub-layers: Keyframe Generator which is common for both agents,
and Animation Generator, which is specific to the embodiment.

Kipp et al. have also proposed that the Realization phase of the SAIBA
framework should be separated into Realization Planning, and Presentation [2].
In their architecture, BML serves as input to the Realization Planning, just
like on Greta’s Keyframe Generator layer. However, the Realization Planner
produces EMBRScript [1], which is an executable animation script that is sent
into the Presentation module, which controls a 3D character
Smartbody [8] can also be used to control any virtual humanoid character. BML
is given as input to a Behavior & Schedule Manager, which produces and runs
the plan.

Elckerlyc [10] was developed as a more flexible BML realizer. A first stage
parses the BML blocks and schedules them. The scheduler builds a plan that
acts like a peg board. Whenever a behavior is scheduled, each sync point is
solved and placed in a slot of the peg board so that sync points that should
be executed at the same time are placed together. This allows for continuous
interaction, because it is possible to change the plan after it has been scheduled,
by modifying the placement of the syncpoints in the pegs.

We find that the current state of the art leads to being able to control charac-
ters independently of their embodiment, and to be able to continuously interact
with them.

3 Thalamus Framework

The Thalamus Framework is a cross-media body interface for multiple simul-
taneous artificial embodied characters. It supports and is largely based on the
architecture of BML. Having a framework that can act as an abstract inter-
face to the character’s sensors is especially important when dealing with robotic
characters, and follows on the proposal by [12] of having a tight feedback loop
between the embodiment and the behavior planner.



We also follow the trend of dividing SAIBA’s Behavior Realization level in
two sub-layers, as can be seen in Figure 2. The first one is the Behavior Schedul-
ing, which actually keeps in line with [2, 5]. The second sub-layer of our Real-
ization level is the Body Execution.

Fig. 2. Our subdivision of SAIBA’s Behavior Realization layer into the Behavior
Scheduling and Body Execution sub-layers.

3.1 Structure

A Character in Thalamus is composed of a mind interface and a body interface,
as can be seen in Figure 3. BML blocks are sent via the mind into the character,
and the character sends them for scheduling to the plan. The scheduling process
solves the sync points of each behavior in order to create ActionEvents for it in
the Eventline. When an ActionEvent is activated, it launches the execution of
the corresponding behavior. This behavior will call the corresponding actions in
the BodyInterface, with the correct parameters.

Fig. 3. The Thalamus Framework architecture.

3.2 Behavior Scheduling

The scheduling process is inspired by Elckerlyc’s peg-board mechanism [10],
which we call Eventline in our architecture. The Eventline contains slots that
relate Events to ActionEvents. An Event can be an absolute time instance, like
time=1, a SyncPoint from BML, or any external event that is sent to the plan
and that does not originate in BML.

It is important to emphasize the fact that an event is not sent when the
plan executes the behavior, but only when the character acknowledges that it
has actually started. This is very important with robots, as they usually have
some delay between the request for executing an action, and actually starting to
execute it.



Our Eventline makes it possible for continuous interaction, as the behaviors
are not hard-constrained on a timeline, just like in Elckerlyk [10]. Conflicts and
overlaps are managed by the usual BML mechanisms.

3.3 Body Interface

There may be several different Characters, each with its own BodyInterfaces,
specific to different embodiments. All BodyInterfaces follow the same interface,
so they can implement the same set of routines, thus allowing the behaviors to
call them regardless of the embodiment they represent.

However, if a behavior tries to call a routine that has not been implemented
in a specific BodyInterface, it will report back to the plan and mind that it failed.

Body Events Besides implementing the necessary set of routines for executing
BML behaviors, the BodyInterface also supports receiving events. These events
can be BML events, non BML events, or sensory events.

The BML events are used for the BodyInterface to notify the plan about
the executed behaviors. These events are, for example, SpeechStart, SpeechEnd,
FaceLexemeStart, FaceLexemeEnd, etc.. There is also a SyncPoint event for no-
tifying about a specific syncpoint, which is useful for the <Sync..> tags in BML
Speech nodes. This SyncPoint event can also be used to send specific non BML
events to the EventLine.

The BodyInterface also supports perception events, originated by the em-
bodiment’s sensors. These are sent by the BodyInterface to the Character in the
form of a Perception structure which is represented in Figure 4. The perception

Fig. 4. The Perception structure. Each perception contains a Name, a unique Id, and
a set of Parameters.

has an Id, which is a unique identifier for each perception, and a Type.
The currently supported perceptions were defined for our scenario. They

can be of type SoundLocated, SensorTouched, or VisionObjectDetected. Each
parameter is composed of a Name and a Value. The Name is a String, while the
value can currently be an Integer, a Float, a Boolean or a String. This list can
furtherly be extended.

The list of supported or required parameters depends on the type of the per-
ception. Taking a SoundLocated perception as example, it can have parameters
”Angle”:float, and ”Intensity”:float, so that the character may know where the
sound came from, and how loud it was. A SensorTouch perception can have



parameters ”SensorName”:string and ”State”:bool, so that it may know which
sensor was touched, and if it was actually touched or released (touched would
mean a True ”State”, while released would mean a False ”State”).

Mind Events The perceptions that are generated by the environment are sent
through the Character into the mind. This way the mind can take appropriate
action.

The mind may be a deliberative mind with intent and behavior planning, or
even a simple reactive mind which can just immediately react to the events it
receives from the body [11]. The only requirement on the mind is that it must also
implement an interface we call MindInterface, which is capable of maintaining
bidirectional communication with the Character.

Currently, the MindInterface supports a) receiving Perceptions and behavior
execution Feedback, b) requesting the execution of pre-loaded behaviors (stored
in .bml files) by their Id, c) sending BML code to the Character, and d) request
the execution of an ActionEvent by the Character. This last feature is very inter-
esting to support continuous interaction and interruption of behavior execution,
as it makes it possible for the mind to interfere on the scheduled plan.

4 Case study: The Path of NAO

To test our framework, we created a scenario1 in which two completely different
robots interact with each other by running a set of BML scripts, while also
interacting with the environment through their sensors. The robots used are a
NAO robot 2 and an EMYS robot [7].

The EMYS robot is a robotic head, that can speak, gaze and perform facial
animations. It currently has only a sound location sensor that is accomplished by
a Microsoft Xbox KinectTM. It will perform Speech and Face-Lexeme behaviors.
The perception its mind will react to is SoundLocated.

The NAO robot is a humanoid robot that can walk and perform body anima-
tions. It also has lots of sensors that can be used to interact with the environment.
It will perform Locomotion, Speech and Posture-Pose-Lexeme behaviors. The
perceptions its mind will react to are VisionObjectDetected and SensorTouched.

Beause we have not implemented a Behavior Planner that could generate
BML for this scenario, we have previously written it as BML blocks which are
pre-loaded and scheduled into the plan. Each of these characters has a very sim-
ple reactive mind, which, on reception of each perception, send an ActionEvent
back through its Character and into the plan. This ActionEvent can interrupt
the current behaviors, and eventually trigger new ones.

1 The full scenario is shown in the video that accompanies this paper.
2 www.aldebaran-robotics.com



4.1 Discussion

We found our framework to be capable of executing the aforementioned scenario.
However, there were some issues that we noted and are worth mentioning.

On the NAO robot’s side, we found some complications in having accurate
and responsive control both over the robot’s actions and sensors. Sometimes the
robot raises an internal event stating that the animation has started when in
fact it hasn’t. That triggers a start SyncPoint in the plan, which in turn, triggers
a speech that should start synchronized with the animation, but that actually
starts before it.

It is clear that robotic animation systems may have these kind of flaws. We
thus suggest robotic control system developers to work more closely with users
and high-level developers, by looking at this kind of needs.

Taking another example, EMYS’ control system was developed by us, and
therefore, matches our needs in a higher level. The result is accurate control over
it’s behavior: when we play or stop and animation, it responds immediately, and
sends accurate events back to the character’s body interface.

As to using sensors to trigger BML behaviors, we sometimes encountered
false positives, both due to noise in the sensor’s circuitry and also due to misin-
tepretation of perceptual data. On sound location sensors, for example, echoes
might introduce noise in the readings. NAO’s head touch sensor however, ac-
tually suffers from noise, and frequently triggers events without having been
touched.

We therefore had to filter the perceptions in the mind level, before reacting
to them.
However, in this kind of framework, it would be useful to be able to filter out
false perceptions before they reach our character. After having solved the sensor-
imperfection related problems, the scenario ran correctly, except for ocasional
delays on NAO’s motion response.

5 Conclusions and Future Work

We have developed the Thalamus framework, which is based on the SAIBA
framework, but extends it in order to support a perceptional loop for virtual or
robotic embodied characters. The perceptional loop can interact with the BML
behavior loop, in order to provide continuous interaction based on the SAIBA
framework. In order to process the perceptual data in our framework, we have
abstracted the data from the sensors into a generic perceptual structure. This
perceptual structure was shown to be adequate for the perceptual loop, however
it currently lacks formal specification.

We conclude by suggesting the definition of a formal Perception Modelling
Language (PML) which meets our extended SAIBA architecture and can interact
with BML. Our results show that a widespread specification of PML may provide
current embodied characters with generalized continuous interaction capabilities,
thus closing the interactive loop.



Acknowledgements

This work was supported by the EU FP7 ICT-215554 project LIREC (LIving
with Robots and intEractive Companions). This research was supported by EU
7th Framework Program (FP7/2007-2013) under grant agreement no. 215554,
FCT (INESC-ID multiannual funding) through the PIDDAC Program funds.

References

[1] Heloir, A., Kipp, M.: EMBR: A realtime animation engine for interactive em-
bodied agents. 2009 3rd International Conference on Affective Computing and
Intelligent Interaction and Workshops 1, 1–2 (Sep 2009), http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5349524

[2] Kipp, M., Heloir, A., Schr, M.: Realizing Multimodal Behavior: Closing the gap
between behavior planning and embodied agent presentation. Framework (2010)

[3] Kopp, S., Krenn, B., Marsella, S., Marshall, A.N.: Towards a Common Frame-
work for Multimodal Generation : The Behavior Markup Language. Information
Sciences (2006)

[4] Mancini, M., Niewiadomski, R., Bevacqua, E., Pelachaud, C.: Greta : a SAIBA
compliant ECA system. Language (2008)

[5] Niewiadomski, Radosaw, Obaid, M., Bevacqua, E., Looser, J., Le, Q.A.,
Pelachaud, C.: Cross-media agent platform 1(212), 11–20 (2011)

[6] Reidsma, D., Welbergen, H.V.: BML 1.0 Standard.
http://www.mindmakers.org/projects/bml-1-0/wiki/Wiki

[7] Ribeiro, T., Paiva, A.: The Illusion of Robotic Life Principles and Practices of
Animation for Robots. In: HRI 2012. No. 1937 (2012)

[8] Thiebaux, M., Rey, M., Marshall, A.N., Marsella, S., Kallmann, M.: SmartBody :
Behavior Realization for Embodied Conversational Agents. Information Sciences
(Aamas), 12–16 (2008)

[9] Vilhjalmsson, H., Cantelmo, N., Cassell, J., Chafai, N.E., Kipp, M., Kopp, S.,
Mancini, M., Marsella, S., Andrew, N., Pelachaud, C., Ruttkay, Z., Thórisson,
K.R., Van, H.: The Behavior Markup Language : Recent Developments and Chal-
lenges. Artificial Intelligence pp. 99–111 (2007)

[10] Welbergen, H., Reidsma, D., Ruttkay, Z.M., Zwiers, J.: Elckerlyc. Journal on
Multimodal User Interfaces 3(4), 271–284 (Sep 2010), http://www.springerlink.
com/index/10.1007/s12193-010-0051-3

[11] Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons
(2002)

[12] Zwiers, J., Welbergen, H.V., Reidsma, D.: Continuous Interaction within the
SAIBA Framework. Framework pp. 324–330 (2011)


