TECNICO
LISBOA

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TECNICO

Creating the Illusion of Life
in Autonomous Social Robots

Tiago Guiomar Ribeiro

Supervisor: Doctor Ana Maria Severino de Almeida e Paiva

Thesis approved in public session to obtain the PhD degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

2020

TECNICO
LISBOA

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TECNICO

Creating the Illusion of Life in Autonomous Social Robots
Tiago Guiomar Ribeiro
Supervisor: Doctor Ana Maria Severino de Almeida e Paiva

Thesis approved in public session to obtain the PhD degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Doctor José Manuel da Costa Alves Marques, Full Professor, Instituto Superior
Técnico, Universidade de Lisboa

Members of the Committee:

Doctor Bram Vanderborght, Professor, Faculty of Applied Sciences, Vrije Universiteit Brussel
and Planders Make, Belgium

Doctor Ana Maria Severino de Almeida e Paiva, Full Professor, Instituto Superior Técnico,
Universidade de Lisboa

Doctor Duarte Nuno Jardim Nunes, Full Professor, Instituto Superior Técnico, Universidade de
Lisboa

Doctor Alexandre José Malheiro Bernardino, Associate Professor, Instituto Superior Técnico,
Universidade de Lisboa

Doctor Wendy Ju, Assistant Professor, Jacobs Technion-Cornell Institute, Cornell Tech, USA

Funding Institutions
Fundacio para a Ciéncia e a Tecnologia, through the INESC-ID multiannual funding (PIDDAC),
the project PEst-OE/EEI/LLA0021/2013 and the grant SFRH/BD/97150/2013.
European Union through the 7" Framework Program (FP7/2007-2013) grant. 215554, the
ICT-215554 project LIREC and the ICT-317923 project EMOTE.

2020

v

Dedicated to my parents,
who gave me the tools I needed to become an inventor, and also to my grandmother Avé Nela who has attentively

been waiting for her first descendent to conquer a doctoral degree.

vi

Acknowledgments

After eight and a half years working on my research, it is difficult to recall and mention every single person who has
helped, pushed me in the right direction, or just stood there to listen while I debated to myself. I start by apologizing
to anyone who I may have missed. My first thank you is for my advisor Ana Paiva for challenging and leading me
into this PhD, and especially for giving me freedom to explore. In the midst of my confusion, she would enlighten
me through words as simple as "do what you believe in". My major task force has lied within the GAIPS group at
INESC-ID, and I will be unable to thank every single person. André Pereira and Iolanda Leite welcomed me into the
2n7.29 office in 2011 and taught me how to become a scientist and a roboticist. To them I owe a lot of mentorship
and fraternity, so know that this thesis is also for you. Thank you Sofia for always listening and providing your fair
judgement. Thank you Filipa for being an attentive learner and taking over some of my roles in the group. And
thank you Patricia for everything you taught me about psychology, interaction design and thinking out of the box
- or out of engineering. Your insights and directions helped me to raise my standards on my final achievements
and results. Nearly every single person at GAIPS contributed to the accomplishment of my work. I must thank
all the professors, namely Francisco Melo, Carlos, Rui and Jodo, and also Samuel and Joana, for the constructive
discussions. An additional thanks to Eugenio who was part of a considerable portion of my work, and to Marco and
Guilherme for the push-start they gave me. Thank you to all the other PhD and MSc students who used my work
and made it a substantial contribution. From GAIPS I draw a last big thank you to Sandra S4 who was always there
whenever I needed to manage logistics, journeys, shopping for equipment, and nearly any event or experiment in
which I’ve participated. Without her the castle would just fall apart. I thank my family, namely my parents and
my sisters Sara and Guida who always believed in me and supported me, and my grandmother Avé who’s hope of
seeing me through this period has always motivated me to keep moving forward and complete this thesis. Thank
you Telma for standing by my side every day whether I'm on a workaholic spree, stressed to conquer a deadline
or depressed whenever anything went wrong. Your words and your smile gave me the comfort I needed to never
give up on any ambition that I've set to achieve. Within my dear friends I draw a particular thank you to Sergio
Almeida, Pedro Lopes, Daniel, Fabio, Tania, Ricardo, Marta, Vasco, Dério, Nuno Teixeira, Nuno Marques and Vivi
who followed closely, and so many others for whom infrequent encounters did not impair their support, such as
Ross Mead, Joana Botelho, Filipa Nunes, Kim Baraka, Vanessa Pedreiro and Vitor Abrantes. Many other people
have structurally supported me, such as Julia Oliveira from the academic services, Luis Revez and all of IST’s GOP
members for helping to manage experiment locations. I further extend a warm thank you too all the participants I
had in my experiments, to CENTRA - Center for Atrophysics and Gravitation for giving access to their HPC cluster,
and all the collaborators from the LIREC and EMOTE projects. I also thank the IST, INESC-ID and Fundagao para
a Ciéncia e a Tecnologia, and additionally all the committees from every conference I have participated in, including
everyone who has reviewed my papers and contributed to make my work better, plausible, and achievable. Final
thank you goes to Erik Satie, Claude Debussy and Pink Floyd in particular for inspiring me through the toughest

times, but also every other artist who’s music has accompanied me in my incredible journey.

vii

viii

Resumo

Os robds estdo-se a tornar numa nova forma de personagens animados, e estéio a ser implantados na nossa sociedade
para serem utilizados em diversas aplicacdes sociais que podem beneficiar do uso de tecnologia e de inteligéncia
artificial, tal como as dreas de educagdo, entretenimento, ou de assisténcia de vida. Esta tese explora como € que
tais robds sociais, através do seu corpo fisicamente expressivo, e considerando as suas capacidades auténomas,
poderdo exibir a ilusdo de vida tal como os personagens do cinema, enquanto interagem com humanos. Em
particular, estamos interessados em trazer teorias e praticas da drea de animacdo de personagens, e de desenvolver
métodos e tecnologia que permitam que animadores tomem um papel estrutural no desenvolvimento de robds sociais
auténomos. Estabelecemos uma nova forma de animagao, que designamos de animagcdo de robds, que pretende
transferir conhecimentos e técnicas de animacao tradicional e de CG para a drea da robética social. Estabelecemos
também uma lista de principios de animacado de robots, baseados nos principios de animagdo da Disney. O modelo e
metodologia SERA foi criado para dar suporte a criagdo de robds auténomos socialmente expressivos, assente numa
metodologia centrada no utilizador, e de forma a incluir peritos ndo-técnicos tal como psicélogos ou animadores. O
inovador motor de animagao Nutty Tracks foi criado para permitir a combinagdo, durante a interacdo, de animacdes
e posturas desenhadas por artistas, com movimento que é gerado em tempo-real. O Nutty Tracks estabelece uma
ponte entre o nivel simbdlico de um agente inteligente, com a geracdo de movimento e de controlo de mais baixo
nivel, permitindo aos robds exibir a ilusdo da vida de forma que os utilizadores sejam capazes de entender as
suas inten¢des comunicativas. Para suportar robds articulados complexos tais como manipuladores industriais,
cridmos o ERIK, uma técnica de cinemadtica expressiva que mistura cinemadtica inversa (CI) com controlo postural
através de cinemadtica direta (CD). Cridmos ainda o Nutty Motion Filter, que permite interpolar e suavizar um
sinal de movimento em tempo-real, de forma a respeitar as limitacdes cinematicas de juntas ou de movimento
espacial, fornecendo pardmetros que permitem ajustar a expressividade do sinal resultante. Diversos casos de uso
sdo apresentados, que utilizam diferentes robds. Em particular, desenvolvemos o cendrio Ahoy no qual humanos
participam num jogo de mimica com o robd artesanal Adelino. O robd faz uso da sua postura expressiva para dar
pistas aos jogadores, enquanto mantém o seu olhar na sua direcdo. De forma semelhante, o cendrio AvantSatie
foi criado, no qual o Adelino participa como um companheiro auténomo num jogo de piano. Os estudos com
utilizadores demonstraram que os participantes foram capazes de entender a inten¢do do robd, mesmo que a solugdo
em tempo-real do ERIK exibisse uma postura ligeiramente distorcida devido ao sistema resolver simultaneamente
para os objetivos de orientacdo e postural. No longo prazo, as nossas teorias, métodos e técnicas estabelecem
os alicerces para a criagdo de robds auténomos expressivos, capazes de exibir a ilusdo de vida através de uma

abordagem com artistas, enquanto os mesmos interagem com humanos e o seu ambiente envolvente.

Palavras-chave: Animacao de Robos, Interacdo Pessoa-Robd, Robdtica Social, Cinemética Expressiva,

Cinematica Inversa

iX

Abstract

Robots are becoming a new form of animated characters and are being deployed into our society to be used in
various social settings that can benefit of the use of technology and artificial intelligence (Al), such as education,
entertainment or assisted living. This thesis explores how such social robots, through their physically expressive
embodiment, and considering their autonomous capabilities, may be able to convey the illusion of life just as movie
characters do, while interacting with humans. In particular, we are interested in bringing in theories in practices
from the field of character animation, and to develop methods and technology that will allow animation artists to
take a structural role on the development of autonomous social robots. We establish and describe a new form of
animation, called robot animation, which sets to bring the existing knowledge and techniques from traditional and
CGI animation, into the field of social robots. Along it we have outlined a list of principles of robot animation, based
on the original principles of animation from Disney. The SERA model and methodology was created to support the
creation of autonomous socially expressive robots, which relies in user-centred design and includes non-technical
experts such as psychologists and character animators. An innovative animation engine called Nutty Tracks was
created to support the blending, during interactions, of animations and postures pre-designed by artists, with motion
that is procedurally generated in real-time. Nutty Tracks bridges the symbolic level of an autonomous artificial
intelligence agent, with the lower level of motion generation and control. This allows us to create autonomous
social robots that can convey the illusion of life, in a way that users are also able to understand its communicative
intentions. In order to support complex, articulated robots such as industrial manipulators, we have created ERIK,
which is an expressive kinematics technique that acts by bring together inverse kinematics (IK) control with forward
kinematics (FK) control. We add to that the Nutty Motion Filter, which is a signal processor that allows to interpolate
and smooth a motion signal in real-time in order to comply with mechanical and kinematic limits of joints or spatial
motion, while providing parameters that allow to tweak the expressivity of the resulting motion. Various use-cases
are presented using different robots. In particular, the Ahoy interactive scenario was developed in which humans
play a game of pantomime with the custom-built Adelino robot. The robot could use its expressive posture to
convey hints to the players, while keeping an orientation constraint towards their face. Similarly, the AvantSatie
scenario was created in which Adelino acts autonomously as a piano-game companion. User studies showed that
the participants were able to decode the intention of the robot even if the ERIK solution, running in real-time, was
slightly distorting the pre-designed postures in order to solve simultaneously for both orientational and postural
goals. The results provide evidence that expressive postures (controlled using FK) could be used along with IK in
order to provide arbitrary robots with an animation model that works ouz-of-the-box, with nearly no tweaking. In the
long term, our theories, methods and technique pose as the foundation towards autonomous expressive robots that
exhibit the illusion of life through an artist-enabled approach, while interacting with humans and their surrounding

environment.

Keywords: Robot Animation, Human-Robot-Interaction, Social Robotics, Expressive Kinematics, Inverse

Kinematics

X1

Xii

Contents

Acknowledgments L e e e e e e e e vii
Resumo e e ix
ADSITACt o o o e e xi
Listof Tables Xvii
Listof Figures o e e e e e e e Xix
Nomenclature L e xxiii
Introduction 1
1.1 Motivation o e e e e e 1
1.2 Research Goals e 2
1.3 Contributions e e 3
L4 Outline e e 4
Background 5
2.1 Human Emotion and Expression e 5
2.2 Character Animation Theory and Practices 6
2.2.1 Disney’s Twelve Principles of Animation 7
2.2.2 Inspiration from TV Cartoons - Warner Bros., and MGM and FOX 8
223 Puppet Animation e 9
224 Animation Curveso e 10
Related Work 13
3.1 Interactive Embodied Characters 13
311 Architectures oL e e e e e e e 14
3.1.2 Behaviour e 15
3.1.3 Animationand Control 16
3.2 Inverse Kinematics L e e 16
3.2.1 Jacobian Inverse Methods for IK 18
3.2.2 Data-driven, Probabilistic and Hybrid Approaches for IK 24
3.2.3 Heuristic IK Techniques 25
3.3 Expressive and Animated Social Robots L 28
34 Animated Robots L 30

4 Robot Animation in Theory

4.1 The Principles of Robot Animation
4.1.1 Squashand Stretch L
4.1.2 Anticipation L e e e e e e e e e e e e
413 Intention e
4.1.4 Animated, Procedural and Ad-hoc Action, .
415 SlowlInand Slow Out e
416 ATCS e e
4.1.77 Exaggeration e e
4.1.8 Secondary Action and Idle Behavior oo oo
419 ASYMMELrY oL e e
4.1.10 Expectation e
4111 TIMINg o o e e e e e e e e e e e e e
4.1.12 Follow-Through and Overlapping Action

4.2 Dimensions of Kinematronics e

4.3 The Nutty Workflow for Robot Animation
43.1 ConceptDesign e e
432 TheNutty Workflow

5 Robot Animation in Practice

5.1 Building Autonomous Socially Expressive Robots using SERA
5.1.1 The SERA Development Methodology
5.1.2 Thalamus
513 Skene e e
5.14 Other SERAmodules
5.2 The Nutty Pipeline for Programmable Robot Animation Engines
5.3 Animation Tools for Social Robots
5.3.1 Animation Design Tools and Plug-ins
5.3.2 Animation Programming Tools

6 Robot Animation Technology

6.1 Nutty Tracks o e e e
6.1.1 EXecution
6.1.2 BodyModel and NuttyOutput
6.1.3 Nutty Animation Program (NAP)
6.1.4 The Ani-Buffer
6.1.5 Animation Channels e
6.1.6 Ani-Buffer Operators
6.1.7 Animation Controllers and Layers
6.1.8 Nutty Plugins foreachrobot

Xiv

6.2 The Nutty Motion Filter (NMF) 94
6.2.1 NMFDefinition e 96

6.2.2 Usageand Examples e 99

6.2.3 Commentsand Remarks o 108

6.3 ERIK - Expressive Robotics Inverse Kinematics 108
6.3.1 From FABRIK to Expressive Robots 111

6.3.2 BWCD: Backward Coordinate Descent 112

6.3.3 The ERIK Pipeline 112

6.3.4 The ERIK Joint Model and LALUT 114

6.3.5 ERIK Parameters and Model Specification 116

6.3.6 TheError Function 118

6.3.7 The Nutty Motion Filter 119

6.3.8 The Superpoint 121

6.3.9 ERIKEXtensions ittt e 121
6.3.10 Evaluation e e 122
6.3.11 Discussion e e e 134

7 Case Studies 137
7.1 Architectural Studies L. e 137
7.1.1 EMOTE e 137

7.1.2 E-FitKeepon e 138

TA3 Sueca e e 139

7.2 User Studies with ERIK and Adelino 141
7.2.1 Adelino, The Craft Robot e 142

7.3 Ahoy - The Pantomimic Expressive Manipulator 146
731 Sample e e e e e e 147

732 Procedure e e e e e 147

733 MeASUIes v v it e e e e e e 148

734 Results L e e 148

7.3.5 DiIsCUSSION L e e e 152

7.4 AvantSatie - The Piano Game Companion 156
7.4.1 Avant Satie - Game descriptiono 157

7.42 Study Conditions e e e e e e e 159

743 StudyDesign e 162

744 Sample 163

745 Procedure e e e e e 163

TA.6 Measures i i e e e e 164

TAT Results e 166

7.4.8 Regarding the Subjective Measures 168

XV

7.4.9 Regarding the Objective Measures 170

7.4.10 Discussion e 170

8 Conclusion 175

Bibliography 179

A ERIK Algorithm Al

A.1 Algorithmic Specification e A.l

A.1.1 Description of functions used throughout the algorithms Al

A2 Detailed Algorithms A4

B User-Study Questionnaires B.15
B.1 Ahoy Study Questionnaire e e e e e e e e B.16
B.2 AvantSatie Study Questionnaire Ll e B.24

XVi

List of Tables

3.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Calculation of the Jacobian terms e 19
Definition of Nutty Motion filters used asexamples 100
Description of Parameters and Hyperparameters of ERIK 117
List of symbols and notation for ERIK joint information 117
Definition of mathematical symbols used in the algorithms. 118
Definition of test-skeletons used in the ERIK evaluation procedure. 124
Denavit-Hartenberg parameters (classic) used to run the simulations of DLS on Skeleton C. 127
Comparison of single-core performance of the CPUs used inthe HPCC 129
Statistics regarding the evaluation experiments with a total of ~ 239M samples. Note that for

the DLS cases, we present the total number of postures simulated, but the number of samples

corresponds to the result of applying the filter explained in the previous section. 130
Mean value and Standard Deviation for the ERIK and DLS variants comparison. 134
The questions used in each specific measure on the Ahoy study. 149
Statistical data and significance test results for Ahoy 150
Questionnaires used for the RPU RIM and AIL measures in AvantSatie. 165
Reliability analysis of the various scales and dimensions 166
Results of the Shapiro-Wilk’s test of normality on each of the subjective measures. 167
Results of the comparison of means tests on each scale of the subjective measures. 167
Results of the comparison of means tests on each of the objective measures. 170

Xvii

Xviii

List of Figures

2.1
2.2
23
24

3.1
32
33
34
35

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

The Muppet Show’s Kermitthe Frog.
The Noh mask effect [26]. e
The animation curve of the translation of a drag car acceleration.

The animation curve of the rotation of apendulum

The SAIBA framework
An articulated structure used in both Forward Kinematics (FK) and Inverse Kinematics (IK). . . .
The Jacobian solution as a linear approximation of the actual motion of the kinematic chain.

An example of a visual solution of the IK problem using the CCD algorithm.

An example of a full iteration of FABRIK. o o o

An animation sequence denoting the principle of Squash & Stretch
The principle of Squash & Stretch shown on the NAOrobot.
An animation sequence denoting the principle of Anticipation
Animation curves demonstrating anticipation L. 0oL Lo L
An animation sequence denoting the principle of Intention
An animation sequence denoting the principles of Pre-animated and Ad-hoc Action
An animation sequence denoting the principle of Slow In/Out
Animation curves demonstrating Slow In and Slow-Out
An animation sequence denoting the principle of Arcso
Animation curves demonstrating Arcs oLl
An animation sequence denoting the principle of Exaggeration
The principle of Exaggeration exemplified on the NAOrobot.
The principle of Exaggeration exemplified on the EMYSrobot.
An animation sequence denoting the principle of Secondary Action.
An animation sequence denoting the principles of Asymmetry and Idle Behaviour
An animation sequence denoting the principle of Expectation
An animation sequence denoting the principle of Timing
The Spatial Expression of Kinematronics.
The four kinematronics dimensions

The Nutty robot animation workflow.

X1X

17

56

5.1
52
53
54
55
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28

The composition of our typical HRI scenarios. 61

The SAIBA model for virtual agents 62
The SERAmodel 62
The SERA-based multi-stage ASER development methodology 64
Example of several Thalamus modules coexisting in the same virtual space 67
A Nutty-based animation engine, including the Nutty Pipeline 71
The four types of Nutty APUs. e 73
A screenshot of the Nutty Tracks plug-in for Autodesk 3dsmax 75
A screenshot illustrating the robot-animation trajectory feature in Autodesk Maya 77
The Nutty Tracks GUL e e e e e e e 79
The Nutty Tracks standalone GUL 82
(reiteration of Figure 5.6) The Nutty Pipeline 82
The Nutty Tracks Level 3 APU. 82
The contents of a BodyModel. 85
The BodyModel for the EMYSrobot 86
An example partial Ani-Buffer for the EMYSrobot. oL, 87
An example animation controller GUI with the signal color-coding using in Nutty Tracks. 89
The structure and flow of aNAP. L 90
A real Keepon robot and range of execution of its Arduino-hacked servos. 92
A screenshot of a Virtual-Keepon builtin Unity3D 93
The animatable CGI Keepon robot in Autodesk 3ds Max. 93
A diagram illustrating jerk, acceleration and velocity of a C® continuous motion signal 95
Comparison of the output saturation function € L. 97
Three example input trajectories, used to demonstrate the use of the Nutty Motion Filter. 100
Plots of the different transfer functions specified by each hyperparameter group 101
Comparison of the effect of the tanh-limiter on the output the Nutty Motion Filter. 102
Output of the 3" order filter of groups B, C and D, using the simple input signal 103
Comparison of the 37%, 2”@ and 1°¢ order filters using the simple input signal ®. 104
Comparison of hyperparameter groups A, B, C and D, using the random input signal ?r. 106
Comparison of groups A, B, C, D and F, using the circular input signal &¢. 107
The ERIK workflow, illustrated as a particular version of the Nutty Pipeline 110
The ERIK Pipeline e 113
The ERIK Joint Model e 115
The latitude coordinate System it e e e e e e e e e e e 116
Five example test postures for skeleton C 0oL oo 125
The postural simulation space for skeleton C, illustrating 3789 target postures 125
Ilustration of a point cloud corresponding to 7609 test samples 126
Comparison of orientation errors of ERIK on Skeleton C to DLS100_nopost. 129

XX

6.29 Normal distribution plots of the final combined error and error-measures 131

6.30 Results of ERIK’s evaluation process. o v v v i it e e 132
6.31 Comparison of the normal distribution plots of the errors for each DLS version and for ERIK
Skeleton-C. L L e 134
7.1 The physical setting of the EMOTE Enercities scenario. 138
7.2 Systemusedinthe EMOTE scenario 138
7.3 The E-Fitscenario. 139
7.4 Systemusedinthe E-Fitscenario. L 139
7.5 The physical setting of the SUECA scenario. 140
7.6 Systemusedinthe Suecascenario. o 141
7.7 The physical setting of the Mixed Teams SUECA scenario. 141
7.8 System used in the Mixed Teams Suecascenario. 142
7.9 The concept design of the Adelinorobot L 143
7.10 The Adelino robot, in four different expressive postures 144
7.11 Demonstration of the ERIK algorithm on Adelino’s skeleton 145
7.12 Demonstration of orientation hold during posture shifts 145
7.13 The accumulation of frames for each of the cases described in Figure 7.11 146
7.14 Objective data from the Ahoy study: mean duration of each session, per condition. 151
7.15 Objective data from the Ahoy study: Mean value of each objective measure 152
7.16 Objective data from the Ahoy study: analysed perround. 152
7.17 The results collected from the specific measures in Ahoy. 153
7.18 The results collected from measures taken from literature for Ahoy 155
7.19 The setting of the AvantSatie scenarioand study. 157
7.20 A diagram of the game-flow of Avant Satie L L. 158
7.21 Various screenshots of the projected screen of the AvantSatie game 160
7.22 Pictures of the three different postures used by Adelino in the AvantSatie scenario 161
7.23 Comparison of the subjective measures’ scales and sub-dimensions. 169
7.24 Comparison of the results of the objective measures. 170
A.1 A map of the algorithmic description of ERIK A4

XX1

XXii

XXiii

XX1V

Chapter 1

Introduction

1.1 Motivation

The art of animation was born more then one hundred years ago in 1896, when Georges Mélies invented the
stop-motion technique. Twelve years later, Emile Cohl became the father of animated cartoons with *Fantasmagorie’.
Windsor McCay, however, was coined as the father of animated movies for his 1911 work entitled *Gertie the
Dinosaur’, in which he created what is considered to be the first animated character to actually convey emotions
and an appealing personality [1]. Animation movies started to drive the attention of the audiences by providing
compelling stories with rich new characters, each tailored to every story and the audience it aimed at.

These hand-drawn animated characters have been evolving since the early days, following the rise of major
studios such as Fleischer Studio (e.g. "Popeye the Sailor Man’,’Betty Boop’ [2]), Pat Sullivan Studio (e.g. ’Felix the
Cat’ [3]), and of course, Walt Disney Studios (e.g. ’Steamboat Willie’, ’Snow White and The Seven Dwarfs’ [4]).
Some individual animators also had major influence even working between different studios, such as Tex Avery and
his "Looney Tunes’ characters [5].

Now recently, during the last thirty years, animated characters have become mainly computer-animated. Pixar
Animation Studios, part of the Walt Disney Company, stands for most people as the world’s major animation studio,
competing with other studios like DreamWorks or Blue Sky Studios.

Walt Disney Animation Studios and Pixar’s chief creative officer (formerly John Lasseter, now Jennifer Lee and
Pete Docter) has stood through the last decades in the place where Walt Disney himself once stood - leading teams
of some of the best artists in the world to create critically acclaimed animation films such as *Toy Story’, ’Monsters,
Inc.’, "Tangled’, *Big Hero 6’ or "Frozen’. Two of Pixar’s most popular films are "'WALL-E’, which features a
highly expressive animated robot as the main character, and *Big Hero 6° which features a inflatable healthcare
robot hero. All these characters were artistically crafted using computer graphics (CGI) and design techniques, in
order to convey the illusion that they are alive.

Currently however, robots are becoming a new form of animated characters in order to be used in social
applications backed up by technology and artificial intelligence (Al), in fields such as education, entertainment
or assisted living. Such robots are physically embodied interactive agents, and as such, in the light of this thesis,

rely deeply on the concept of believable agents (or characters) as described by Bates [6]. Bates has provided an

influential discussion of the creation of such believable agents, which in turn, are based on the notion from the arts
of believable character, as “one that provides the illusion of life, and this permits the audience’s suspension of

disbelief” [6].

Moving into the scope of this thesis, social robots are defined by Breazeal as a class of robots to which “people
apply a social model to, in order to interact with and to understand” [7]. Bartneck & Forlizzi have also defined a
social robot to be “an autonomous or semi-autonomous robot that interacts and communicates with humans by
following the behavioral norms expected by the people with whom the robot is intended to interact” [8]. In a more
technical interpretation, social robots can be seen as a new form of human-computer interface, that provides the
computer part with a physically expressive, active and perceptive embodiment, through which a sociable artificial

intelligence agent engages in an interactive application with the human user and its surrounding environment.

Considering the social, communicative, autonomous, and believable aspects of social robots, our work is directed
towards how they can culminate as actor-interfaces for the users, through the means of animation theories and

practices applied to robots.

1.2 Research Goals

The ultimate goal of our work is to understand how these social robots, through their physically expressive
embodiment, and considering their autonomous capabilities, may be able to convey the illusion of life just as movie

characters do, while interacting with humans in/and their environment.

The key to this goal is in establishing a new form of animation, called robot animation. In the context of social
robotics, our understanding is that robot animation is more than just making the robot move. It is about making
the robot seem alive while interacting with humans in particular tasks or applications. Van Breemen had initially
defined animation of robots as “the process of computing how the robot should act such that it is believable and
interactive” [9]. It seems relevant however to note that what markedly distinguishes an animated robot from, e.g. a
virtual animated robotic character, is the fact that the robot exists in our physical world. Moreover, we consider the
concept of robot animation to be especially directed towards interactive applications where autonomous robots are
controlled by an Al In contrast, we still consider animatronics as the ability of making a robot move, following

some predefined trajectory (e.g. for film or live performances), and following on traditional animation principles.

Upon assimilating all the social aspects, we therefore complement Van Breemen’s definition by stating that
robot animation consists of the workflow and processes that give a robot the ability of expressing identity, emotion
and motivated intention during autonomous interaction with human users. The key words, in this definition, that
guide our stance, are expressing and autonomous, i.e. robot animation is closely related to autonomous expression.
The idea behind expressing motivated intention is that an animated robot should be able to portray its motivation
(i.e. story, purpose of existence), throughout its actions, in a way that the human interactors are able to understand

its underlying intentions, and therefore to interpret the robot’s motivation during their interaction.

1.3 Contributions

With this thesis, we expect to enrich the field of robot animation and in particular, animation of autonomous social

robots, by making the following contributions:

The Principles of Robot Animation that outline how traditional principles of animation can be adopted, adapted

and used with autonomous social robots in order for them to convey the illusion of life;

The ERIK algorithm that allows to animate arbitrary articulated structures using forward kinematics and inverse
kinematics simultaneously, allowing an endpoint to orient towards a target direction while the whole body is

used to convey an expressive posture;

The Nutty Tracks Workflow and Programmable Animation Pipeline that provides non-linear animation capa-
bilities to an expressive robot, by allows it to convey expressivity through a blend of pre-designed animations

and postures, and procedural motion;

The SERA model that establishes tools and a methodology for creating autonomous socially expressive robots

using re-usable components;

Robot Animation uses cases featuring the craft-built Adelino robot, to demonstrate how such contributions may

be used within an autonomous social robot application, which in our cases are directed at entertainment.

Throughout the development of our work, we have authored and co-authored over 30 publications across a wide

variety of conferences and workshops, mostly of high reputation. In particular, we highlight the following ones:

¢ Ribeiro, T. & Paiva, A. (2012). The Illusion of Robotic Life: Principles and Practices of Animation for Robots.
In ACM/IEEE International Conference on Human-Robot Interaction - HRI 12, pp. 383-390, Boston, MA,

USA. * Best paper nominee.

* Ribeiro, T., Dooley, D. & Paiva, A. (2013). Nutty Tracks - Symbolic Animation Pipeline for Expressive
Robotics. ACM International Conference on Computer Graphics and Interactive Techniques Posters -

SIGGRAPH ’13, Anaheim, CA, USA. * 374 place in the Student Research Competition.

* Ribeiro, T. & Paiva, A. (2015). Creating Interactive Robotic Characters. In Proceedings of the ACM/IEEE
International Conference on Human-Robot Interaction - HRI Pioneers Workshop, 215-216, Portland, OR,
USA.

* Ribeiro, T. & Paiva, A. (2017). Animating the Adelino Robot with ERIK. In proceedings of the ACM
International Conference on Multimodal Interaction (ICMI’17), pp. 388-396, Glasgow, UK. ACM.

* Ribeiro, T. & Paiva, A. (2019). Expressive Inverse Kinematics Solving in Real-time for Virtual and Robotic

Interactive Characters. arXiv preprint: ¢s.RO/1909.13875.

e Ribeiro, T. & Paiva, A. (to appear). The Practice of Animation in Robotics. In Noceti, N., Sciutti, A., Rea,
F. (Eds.), Modelling Human Motion. Springer. ISBN: 9783030467326. * Extended preprint published to

arXiv titled Nutty-based Robot Animation - Principles and Practices.

* Sequeira, P., Alves-Oliveira, P., Ribeiro, T., Di Tullio, E., Petisca, S., Melo, F. S., ...Paiva, A. (2016).
Discovering social interaction strategies for robots from restricted-perception wizard-of-oz studies. In
proceedings of the 11" ACM/IEEE International Conference on Human-Robot Interaction (HRI’16), pp.
197-204, Christchurch, New Zealand. ACM. * Best paper award

* Paiva, A, Leite, I. & Ribeiro, T. (2014). Emotion Modelling for Social Robots. In Calvo, R., D’Mello, S.,
Gratch, J., & Kappas, A. (Eds.), The Oxford Handbook of Affective Computing. Oxford University Press.
ISBN: 9780199942237.

1.4 Outline

This document is organized as follows. In the next chapter we introduce some theoretical background on expression
of emotions in humans, and on character animation. In particular we describe the popular Twelve Principles of
Animation from Disney, which have deeply inspired our work. Chapter 3 presents a review of the related work
that has motivated or contributed to our research and development. In Chapter 4 we present our own theoretical
foundations for creating the Illusion of Life in autonomous social robots, including our Principles of Robot
Animation, the Dimensions of Kinematronics, and the Nutty Workflow. Chapter 5 introduces our general practices
for developing robot animation in HRI scenarios, including the SERA model for building autonomous socially
expressive robots, the Nutty Pipeline and discusses the use of tools for the animation of social robots. Chapter 6
presents the main technological contributions of the thesis, including Nutty Tracks, the Nutty Motion Filter, and
ERIK, our expressive kinematics algorithm that allows any articulated robot to be expressive while interacting with
humans. The next chapter presents various HRI scenarios in which both the SERA architecture, Nutty Tracks and
ERIK were used. This chapter also introduces Adelino, an expressive robot that was built in order to challenge and

test our work. Finally, Chapter 8 wraps up the thesis and provides some future work directions.

Chapter 2

Background

While this thesis focuses on the animation and expression of robots, our purpose it to provide such robots with
meaningful expressive behaviour during interactions with human beings.

As such interactions are heavily based on both socially and emotionally expressive behaviours, we start by
describing some of the theories of human emotion and expression that can inform the design of robots’ socially
expressive behaviours. These theories also support us in designing emotion. Product design is an example of
a field that has also struggled between creating art/emotion and functional objects [10]. Design tells us how to
communicate, and we want to understand how to enhance the communication of emotions by robots through
animation. Hess [11] states that "the ability to well communicate emotions is relevant for both the encoder, who
would like to be understood, and the decoder, who strives to understand’.

Because animation is a cornerstone of this thesis, we complement this chapter with an overview of the major

character animation theories and practices that have guided our work since the beginning.

2.1 Human Emotion and Expression

There is no general definition, classification or computational model for human emotions. In this section we
present some of the most popular models, in order to understand how they connect with the expression of emotion.
Considering such models within our work is relevant because social robots are generally backed by an affective
and emotion-enabled artificial intelligent agent. Such socially- and emotionally-intelligent agents (SEIAs) may be
build based on human emotion theories in order to provide more believable and adaptive social interactions with
humans. Thus, when designing non-verbal behaviour mechanisms and expressions for a social robot, it is suitable to
understand how such behaviour is actually linked with the emotional models that typically underlie SEIAs.

FACS by Ekman and Friesen [12] is one of the most referenced models of emotional expression. They argue that
humans can universally recognize six basic emotions through facial expression: anger, disgust, fear, joy, sadness
and surprise. This model is very popular in both character animation and in computation, because it is based on a
small set of discrete emotions. It therefore provides an easy model on which to develop agents and characters, and
is especially aimed at providing a legible visual interface to non-expert human users.

Ortony, Clore and Collins developed the OCC model [13], which defines 22 different emotional categories.

However, due to the complexity of the model, Bartneck [14] has developed another model that allows to use the OCC
theory in emotional expression in a five-phase process: Classification What do I feel about what just happened?
Quantification How much do I feel about it?

Interaction How does this affect what [was already feeling?

Mapping What should I do to express this feeling?

Expression How should I do that?

Bartneck also suggests that a mapping from OCC to Ekman’s model is possible, but not trivial. Within this model,
the focus of our work mostly addresses the Mapping and Expression phases.

The Pleasure-Arousal-Dominance model (PAD) is another popular model, proposed by Mehrabian [15]. The
PAD model is actually a three dimensional space in which each emotion is defined by its position in Pleasure,
Arousal, and Dominance coordinates. An advantage of this model is that it is adequate for computation, as emotions
can seamlessly transition from one to another through interpolation. However, depending on the emotions, the
transition from A to B might actually go through an emotion C which might both be invalid within the context, or
be unnatural for expression.

Various authors have published extensive and influential works on human non-verbal communication. Because
this thesis will focus more on theories from character animation, and not ones from human models of expression,
we will make only a mention to some of the works that we consider most relevant. Both Ekman and Allwood
have attempted to understand how to generalize the description of human behaviour, which can be informative for
the development of behaviour for interactive characters [16, 17]. Other authors such as Argyle and Wallbott have
explored social and emotional non-verbal communication through bodily motion and posture [18, 19]. Argyle’s
work does however extend beyond human emotional expression, by including non-verbal communication in animals
and other aspects of appearance such as clothing. Although it also includes a description about the use of gestures,
we cannot refrain from mentioning Kendon’s work as a leading authority on the topic of semiotics and gesture

studies [20].

2.2 Character Animation Theory and Practices
We seem to know when to ’tap the heart’. Others have hit the intellect. We can hit them in an emotional way.

Walt Disney

Driving inspiration for the animation of socially intelligent characters from traditional animation has become a
common practice. Bates claims that insights from character animation literature such as *The Illusion of Life’ [4]
may provide key information for building computational models of believable interactive characters (either virtual
or robotic), by also arguing that “while scientists may have more effectively recreated scientists, it is the artists who
have come closest to understanding and perhaps capturing the essence of humanity” [6].

The same happened upon the emerging of computer animated cartoons. At that time, animators exploring the
new technique also felt the need to look into what had already been done during the last decades, and discover
how that knowledge could be adapted for computer animation. On that topic, Lasseter argued that the traditional

principles of animation have a similar meaning across different animation medium [21].

Disney’s twelve principles of animation are considered by most, to be the commandments of animation. They
are a result of more than 60 years of Disney productions, and were compiled into a book called *The Illusion of
Life’, by Thomas and Johnston, the last two of Disney’s Nine Old Men [4] '.

We have looked into each of these principles of animation, and analyzed what they can mean and how they can

be used on robot animation.

2.2.1 Disney’s Twelve Principles of Animation

We present here a small summary of the original Twelve Principles of Animation defined in *The Illusion of Life’.

We will further extend and relate them to robot animation4.1.

Squash and Stretch states that characters should not be solid. The movement and liquidness of an object reflects
that the object is alive, because it makes it look more organic. If we make a chair squash and stretch, the chair
will seem alive. One rule of thumb is that despite them changing their form, the objects should keep the same

volume while squashing and stretching.

Anticipation reveals the intentions of the character, so we know and understand better what they are going to do

next.

Staging is the way of directing the viewers attention. It is generally performed by the whole acting process, and
also by camera, lights, sound and effects. This principle is related to making sure that the expressive intention
is clear to the viewer. The essence of this principle is minimalism, keeping the user focused on what is

relevant about the current action and plot.

Follow-Through and Overlapping Action are the way a character, objects or part of them inertially react to the
physical world, thus making the movements seem more naturally and physically correct. An example of
Overlapping action would be hair and clothes that follow the movement of a character. Follow-through action
is for example the inertial reaction of a character that throws a ball. After the throw, both the throwing arm

and the whole body will slightly swing and tumble along the throwing direction.

Straight Ahead Action and Pose-to-Pose is about the animation process. An animator can make a character go
through a sequence of well defined poses (Pose-to-Pose action), or sequentially draw each frame of the

animation without necessarily knowing where it is heading (Straight-Ahead action).

Slow In and Slow Out is how the motions are accelerated (or slowed down). Characters and objects do not start or
stop abruptly. Instead, each movement has an acceleration phase followed by a slowing down phase. Slow
out can be confused with follow-through; however, follow-through extends the action, while the slow-out
finishes it smoothly. A movement should not start or stop suddenly, it should always have some acceleration

within, unless it is clearly intended not to.

Arcs draw the trajectories of natural motions, making them feel less machine-like and more natural and organic.

An example is a head that gazes from left to right. A robotic movement would make the head rotate only

A group of nine animators that worked closely with Walt Disney since the debut feature Snow White and the Seven Dwarfs (1937) and
onto The Fox and The Hound (1981).

along its vertical axis. A natural movement will make the head slightly lean up or down towards the midpoint

of the trajectory while rotating.

Secondary Action is an action that does not contribute directly to the expression of an action, but adds personality
and lifelikeness. An example would be breathing, blinking the eyes, or holding and scratching different parts
of the body.

Timing is a dual principle that focuses especially on two different things. First, it can change how users perceive
the emotion of a motion or the physical world in which the character exists. Second, it also relates to the
story, and how the story is being told. It is about how the character pauses between the actions, and how it

synchronizes to itself and the surroundings.

Exaggeration makes relevant features more wild and relevant, and is what makes the characters behave as cartoons,
as opposite to the dull motion of humans in the real world. An example would be popping out the eyes when

startled, or growing a huge red tomato-like head while shouting.

Solid Drawing is about correctly balancing volume and weight of characters and objects. It also warns against
symmetric characters and expressions. Characters do not stand stiff and still, unless that is what they are

intended to portray.

Appeal of a character is how it expresses and asserts its role, personality and relevance in a story. It is possibly the

most subjective principle, as it also relates to how the character can make the viewers believe in its story.

2.2.2 Inspiration from TV Cartoons - Warner Bros., and MGM and FOX

Since The Golden Age of American Animation, Warner Bros. and MGM animators definitely marked their position
as masters of animated cartoons. Although Exaggeration, for example, is already described in the Disney’s list,
these animators took it to another level, by given special focus on physical exaggeration, in which we can actually
identify common subtypes of exaggeration, like extreme distortion or blowing-ups. Most of their animations were
largely based on comic plots, which generally included sever physical damage to the characters, thus justifying why
they developed so much into blowing-ups and heavy distortion of the characters’ body.

While we do not want to blow up or physically damage robots while animating them, some of these practices
can still provide interesting tips on some specific domains, like robots aimed at entertainment. While entertaining,
we want a character to be as much expressive as possible, so entertainment robots will more likely promote the
interest for developing and incorporating behaviors and mechanisms inspired by this kind of animation.

Tex Avery, one of the greatest animators of all time, coined the *Tex Avery Expression’, or just a *Tex Avery’,
which is a very know eyes-popping-out expression generally used in fear or surprise situations [5]. The EMYS
robotic head is an example of how an eyes-popping mechanism can be incorporated into a robot (Figure) [22].

Another common trait is that each character was made very unique and well adapted to its role (principle of
Appeal). Some of the most popular characters created during this time were Bugs Bunny, Daffy Duck, Porky Pig,
Elmer Fudd, Yosemite Sam, Tom and Jerry, Scooby Doo and Droopy [23]. They usually carry or use regular props
that people end up associating with that character, independently of the plot. Most of them also feature unique

catchphrases and often perform secondary action that helps to define the personality of the character they convey.

All these features together contribute to the illusion of the character as a being, and to the reinforcement of the

connection between viewers and the characters.

Chuck Jones was one of the major animators from Warner Brothers (and later MGM), and has described
animation at Warner Brother as “Believability. That is what we were striving for ... belief in the life of the characters.
That, after all, is the dictionary definition and meaning of the word ‘animation’: to invoke life” [24]. This definition

was also cited by Bates on his seminal paper on believable agents [6].

Unfortunately, the practice of these animators is not so well documented as the ones from Disney. As they were
generally jumping around from one studio to another, each animator may have followed different guidelines along
his career, so there are no compiled guidelines to describe their creative process. However, by viewing their work it
is clear that some common traits were followed, just like in the case of extreme exaggeration or the development of

characters that we described.

2.2.3 Puppet Animation

If we are looking at different kinds of animators to draw inspiration from, we must take a look at a genre that
actually shares some practical obstacles with robot animation. Puppets are physical characters that are built in order
to move and be expressive, and are subject to the laws of physics of our real world. If we replace the word *Puppets’

with *Social Robots’ in this last sentence, it would still be valid.

Puppet animation grew especially popular with Jim Henson’s *The Muppet Show’ [25]. Henson’s puppets
(Figure 2.1) are generally very simple in movement. Most of them can only open and close their mouth, and wave
their arms and body. But by developing their own non-verbal language, animators were able to portray all kinds of
different plots with them. By watching episodes of the series we can find that whenever a muppet wants to close its
eyes, it will cover them with their hands, as the eyes cannot gaze or shut. This kind of tricks is very inspiring for

robot animation.

It is empirically clear that if a character has only a mouth that can open and close, it is impossible to portray
emotion by using just its face. That is where animation takes place. Most of the emotional expressions we find in

puppets comes from the movement, and not just the poses.

There is no defined happy pose for a muppet. Instead, there is a bouncy movement with the arms waving around,
that elicits the feeling of excitement and happiness. For fear, the mouth will tremble a lot, and the muppet will
probably cover its eyes and assume a posture of withdrawal. An angry expression is achieved by leaning the muppet
against the object or character of hate, closing its mouth, and pulling back its arms.

Another interesting feature in puppets is that if correctly designed, they can benefit of the "Noh mask’ effect
[26]. These are traditional japanese masks used in Noh drama [27].

Although the mask does not change in shape, it is designed to convey a different emotion depending on the
angle at which it is viewed. When the carrier titls the head downwards, the mask is viewed as a happy face, while
tilting it upwards conveys a sad, or angry expression (depending on the design and purpose of the mask).

As in most inspiration from art, the best way to learn their principles and practices of puppet animation is by

watching the episodes and using them as reference footage.

Figure 2.1: The Muppet Show’s Kermit the Frog.

Figure 2.2: The Noh mask effect [26].

2.2.4 Animation Curves

Animation Curves are tools that are particularly important for animators. An animation curve exists for each degree
of freedom (DoF) that is being animated in a character, and it shows how that specific DoF varies over time [28].
Figure 2.3 shows the animation curve for the translation DoF of a hypothetical drag race car. In a drag race, the
race car only drives forward at full speed. Because this animation curve shows the position changing over time, the
speed of the car at some point of the curve is actually the tangent to the curve on that point (the first derivative). The

second derivative (the rate of change of the tangent) thus represents the acceleration of the car.

200

100 —

Figure 2.3: The animation curve of the translation of a drag car accelerating until it reaches a top speed, and then
decelerating until it halts.

By analyzing the curve, we see that the car starts by accelerating until about halfway through, when it reaches

10

halts.

its maximum speed. We notice this because during the first part of the curve there is an accentuated concavity. Once
until it stops.

the curve starts looking straight, the velocity is being kept nearly constant. In the end the car decelerates until it

Animation curves can also be used to represent Rotation or even Scaling. Figure 2.4 shows the animation curve

of the rotation of the pivot of a pendulum that is dropped from a height of 20 degrees. It then balances several times
20

Y
LY
A1
LY
L
L
3
k1

10 \ s
1 r d b Y
1 ri LY
1 ra hY
1 i LY B
i1 I LY i N
1 i ALY rd Y
‘l I{ \\ II \\ o e

0 ‘\ I’ ‘\ ll ‘\ II -‘h‘“\. -
L s LY Fd LY " i~ — il
L I hY Fd N 2
h 1 Fi LY ri W -
k1 s LY ri
1 I ALY rd
L Fi LY 4
3 r
kY I
-10 A 7
LY i
LY ri
LY rd
Figure 2.4: The animation curve of the rotation of a pendulum that is dropped from 20 degrees and balances until it

In this curve we see some grey squares where the curve changes. These squares are actually keyframes that
were used to design the animation. The curve is a spline interpolation of the movement between these keyframes.

By looking at each keyframe, we see that that the angle goes from 20 degrees to -15, then to 11 and so on. Just

like in the translation animation curve, the tangent of this curve also represents the velocity of rotation.
If we imagine the pendulum going through the lower-most position of its trajectory (which is the position in
which it travels faster), that point would correspond to the O degrees line, thus making sense that the curve in this
point is steeper than in the rest of the trajectory. As the pendulum loses energy and balances less, the steepness is
also lower, which also reflects in a lower speed.

Animation curves thus stand as a very important tool for analyzing and adjusting animations. They can also be
computationally processed just like a signal, in order to warp the animation and create animation effects.

During the last decade, robotic platforms have been evolving in a way that we now have full robotic characters
[29, 30, 9, 31, 32, 22].

with a large number of degrees of freedom, which brings their expressiveness closer to what we may find in animated

cartoons. Besides inspiring the design of robots, animation has also already inspired the design of robot animation

11

12

Chapter 3

Related Work

3.1 Interactive Embodied Characters

One of the major fields that grounds this thesis, and has performed many developments of interest for the creation
of autonomous socially expressive robots, is the field of Intelligent Virtual Agents (IVAs). This field, however, is
also commonly associated with other sub-fields or adjacent fields such as Socially Intelligent Agents or Embodied
Conversational Agents (ECAs). All of them are generally associated with virtual agents.

Both Bates and Reilly have extensively described the concept of believable agents (or characters) [6, 33].
Reilly in particular, argues that “the problem of creating believable agents lies somewhere between the arts and
artificial intelligence” [33]. He further adds that “Artists know how to create believable characters”, and that
“Al researchers know how to create autonomous agents”, thus “joining these two disciplines allows to produce
autonomous, interactive agents that have the abilities that have made the non-interactive characters of traditional
media believable”. On the term believable, he mentions that it is a term taken from the arts to describe characters

that "work". He also adds three lessons from the arts about the fundamental nature of believability:

1. Believable agents may not be intelligent. Al systems designed for rationality and intelligence would be

inappropriate for building believable agents.

2. Believable agents may not be realistic. It is better to go with less realistic characters which meet the audience’s

expectations than to go with more realistic characters which don’t.

3. Believable agents will have strong personalities. These personalities should affect everything about the agent,
including how the agent moves, thinks, and talks. Also, idiosyncratic quirks are extremely important parts of

the agent’s personality.

Regarding the type of agents we are interested in developing, we have taken the designation of believable
interactive characters by Bates [6], and also stepped back from the idea of virtual agents, in order to make
the concept’s relation with the arts more explicit by calling them Characters instead of Agents. Because robotic
characters represent the apex of animated characters, we also reinforce the idea of them being Embodied. Throughout
our work, we therefore drop the designation of such entities as Agents, and adopt the use of the term Characters in

general. As such, we define Interactive Embodied Characters as any type of artificial embodied agent, virtual

13

or robotic, that performs believable, interactive behaviour with humans in given tasks, regardless of human or

anthropomorphic form, and of communication being verbal or non-verbal.

3.1.1 Architectures

The creation of interactive virtual characters has been explored for quite a time now. Some authors have established
foundations on this topic. Here we especially cite the works by Bates, Reilly, Badler and Perlin & Goldberg’s.

Bates has undoubtedly established the foundation of interactive virtual characters through his concept of
believable agents. Along with Loyall and Reilly he described the Tok architecture, which addresses the capabilities
of perception, reactivity, goal-directed behaviour, emotion, social behaviour, natural language analysis and natural
language generation [34]. As such it presents as one of the earliest architectures for socially interactive virtual
agents.

The Perlin & Goldberg presented Improv, a system that allows to create virtual actors that respond to users
and to each other in real-time, focusing on the need of the authors that build such virtual actors [35]. The system
is composed of an animation engine and a behaviour engine. The behaviour engine provides mechanisms to run
scripts and rules that control the actors. The animation engine provides animation layers that allow to create and
blend continuous motion using procedural techniques. Both works have built an architecture that connects a flexible
animation system with some form of Al agent. The latter especially considers the fact that such a system will be
mostly useful if it considers not only the run-time environment, but also the authoring process, by providing ways
of establishing how the "mind" of the character connects and communicated with the "body". The performing
character is actually part of a more complex artificial intelligence (Al) agent. While a fixed-storytelling character
may be fully controlled by an animation that is pre-designed to follow and match such story specifically, interactive
characters need animation systems that can adapt and change in response to the users’ and environment’s events in
interaction-time.

Badler has presented Jack, another one of the earliest interactive virtual human (VH) systems [36]. The author
strived to achieve a system that was able to create a VH that could exhibit both pre-design and procedural animation
that was controlled in real-time by an Al agent that responded to a user via a language based interface.

Many interactive character systems have since then been following a three layer intention-behaviour-realization
framework, which was formerly proposed by Kopp and colleagues as the SAIBA framework [37], illustrated in
Figure 3.1. This framework was created especially for virtual humanoid characters. It splits the whole agent
architecture into a first layer capable of performing some decision-making on the Intention of the agent, which is
then made into a Behaviour plan by the middle layer, and finally, performed and rendered as the virtual character

through the Realization layer.

Intention Planning Behaviour Planning Realization
(e.g. decision-making, Wo2) (e.g. selection from a library, (e.g. rendering of animation,
9 9 timing, synchronization) text-to-speech)

Figure 3.1: The SAIBA framework as described in [37]

The SAIBA framework has also been used with robots (e.g. [38, 39, 40, 41]), and was later extended to also

consider interactive applications and environment-awareness by myself and colleagues, calling it the Socially

14

Expressive Robotics Architecture (SERA) [42]. SERA is described further in Chapter 5.1.

Schroeder developed the SEMAINE API, which was used in the EU FP7 Semaine Project!. This is a component
integration framework, based on the principles of asynchronous messaging middleware. Its architecture, however,
has a pipeline message flow, meaning that it follows in the traditional sense-think-act loop of interactive agents.
The author points out two key requirements for a framework of this kind: Infrastructure, meaning that components
must be able to run on different programming languages and operating systems; and Communication, meaning that
components must follow suitable representation formats, which should be standards where possible[43].

CMION was developed in the context of the EU FP7 LIREC?. It is a mind-body framework for integrating
sensors and actuators through various degrees of abstraction. It was designed especially for allowing agent migration
(transferring the agent’s identify to a different embodiment). As such, it abstractly encapsulates functionalities of
an embodiment into what they call competencies. These competencies share information through a blackboard
component. By defining an embodiment as a set of competencies, agents can then migrate to other embodiments, as
long as those implement the same type of competencies[44].

ROS - Robot Operating System is a popular middleware for robotics that provides a common communication
layer to enable different types of sensors, motors and other components to exchange data [45, 46]. ROS is module-
based, meaning that a ROS-based robot actually runs several different modules, being each one of them responsible
for controlling one or more components of the robot. They communicate based on a message oriented middle-ware
(MOM). This is accomplished through a publish-subscribe pattern, in which each module specifies the type of
messages it wants to receive (subscription), so that each time another module produces that message (publication),

the subscribed modules receive it.

3.1.2 Behaviour

Several authors have proposed different languages and schemes that allow to model and represent non-verbal
behaviour in SIAs such as BEAT [47], CML[48], MPML [49] or APML [50]. The performance of such behaviour
tends however to be based solely on the selection or blending of pre-designed animations specific to the used
embodiment.

Badler [51] has presented an Expressive MOTion Engine (EMOTE) that implements LMA [52] using high-level
parameters for human animation control; however, this solution is designed for anthropomorphic characters.

Schroder et al. have proposed EARL, a general mark-up language that is not dependent of any emotion model
or theory, thus marking a possible step for an abstract and broad specification of emotive behaviour [53]. However,
their language provides only a structure to gather the description of an emotional expression, with no means on how
to accomplish it.

Within the SAIBA framework [37], presented in the previous subsection, we also find the Behavior Markup
Lalguage (BML), a markup language used to represent synchronized multi-modal behaviour, that can be somewhat
seen as a successor to MURML [54] The purpose of this language is to provide a specification of basic expressive
channels and modalities that different authors can use in order to specify behaviour in a generic way. The modalities

currently defined in the BML 1.0 Standard are: Face, Gaze, Gesture, Head, Locomotion, Posture and Speech. More

Thttp://wwu.semaine-project.eu/ (accessed January 12, 2019)
2http://lirec.eu/ (accessed January 12, 2019)

15

http://www.semaine-project.eu/
http://lirec.eu/

detail about the BML actions can be found in [55].

EMBR is a realtime animation engine for interactive embodied agents, designed to work with BML [56].
It proposes that between a high-level behaviour description layer such as one provided by BML, and SAIBA’s
realizer/rendering layer (e.g. a 3D engine) one must include an animation layer that can be scripted. For that purpose
they propose the EMBRScript which can be used to realize particular BML actions such as gazing at another
character with a given emotional expression, therefore allowing such action realization to become more procedural.
However, because it is designed as a layer to be fit into the BML architecture, it remains heavily directed at the

animation of virtual human characters.

3.1.3 Animation and Control

Tomlinson has provided a description about how animating characters for interactive applications is different then
animation characters for film and video [57]. He therefore distinguishes two types of animation: Linear Animation
for film and video, and Interactive Animation otherwise.

Smartbody is a procedural animation system developed especially for virtual humans [58]. It takes a BML
specification of behavior as input in order to be controlled by any type of Al agent. This behavior is scheduled and
executed in several motion controllers, which are combined in each frame to generate a set of skeletal joint rotations
and translations. Smartbody can procedurally generate and adapt gestures using an example-based motion synthesis
approach. The system is heavily based on [59], an example-based motion synthesis technique for locomotion, reach
and object manipulation. This technique takes a takes a large set of example postures of a given embodiment e.g.
reaching towards different directions, and is then able to produce a grasping pose for ano direction by blending the
previously authored examples.

Levine and colleagues have recently developed a technique to animate characteres based on motion learning
[60]. Artists first train the system by creating example motions that are associated with task specification. This
trained probabilistic model can later be used to generate new motions that accomplish new tasks.

Moussa et al. have embarked on one approach for this, using MPEG-4 Facial Animation Parameters (FAP) [61]
applied to a humanoid robotic face [62]. However, FAPs are designed for human faces and thus comprehend an
extensive number of expressive features for the human face.

On the other hand, movement can also be dissociated of the actual body, and instead related to its meaning,
as used in acting and other performance arts such as the Delsarte system [63] and the Laban Movement Analysis

[64, 65].

3.2 Inverse Kinematics

In general, the computation for the animation of a hierarchical, articulated structure (kinematic chain) is done
through Forward Kinematics (FK) and Inverse Kinematics (IK). This section briefly introduces some fundamental
concepts and techniques regarding these processes. IK is a very extensive field and we will therefore focus on the
aspects of it that are most related with our work.

We start by introducing the lexicon and fundamental concepts used in this paper, regarding both FK and IK.

Figure 3.2 provides visual guidance on each of the elements that compose a kinematic chain, throughout the

16

following description:

 given an articulated structure of N joints (J;) that connect N segments,

* being the first joints called Root and the tip of the last segment called EndE f fector,

* having P; as the world-space position coordinates of each joint L;,

* having the P; (or Pr,o¢) located at the origin (O) of the world-space,

 with each joint allowing for a rotation o about an arbitrary axis R; with angular limits such that mina; < a < mazxa,,

* being a Kinematic Solution (KS) given by the configuration of angles a4, ..., an that are applied to each

rotation axis Ry, ..., Ry, of each joint L4, ..., Ly,

* being a Posture represented by the configuration of world-space positions Py, ..., Py of each joint L, ..., L,

Forward Kinematics allows to compute the final Posture achieved from a given Kinematic Solution, while Inverse
Kinematics allows to compute the Kinematic Solution that allows to achieve a given Posture. In reality, IK is
generally used to compute the KS that allows solely the end-effector S to achieve a given target 7" . The transform
of an end-effector S' = Sp,s.S,r; that moves in 3D space may contain up to six DoFs: three for a position in
world-space, and three for an orientation in world-space. Therefore most IK techniques created to date allow to
calculate the KS that allows the chain’s end-effector to achieve either a given position Sp,, or a given orientation
Sori, Or both.

The IK problem is generally addressed either through an analytical solution, or through a numerical solution.
The main difference between both is that an analytical solution is a closed-form expression that takes as input the
desired posture, and outputs the (set of) kinematic solutions for it, solving the IK problem for a particular kinematic
chain. This means that if any change is made to any joint configuration regarding its rotation axis, angular limit, or
even a segment’s length, then the solution-expression needs to be re-calculated. On the other hand, a numerical
solution can be more generalizable, but is generally implemented as a non-linear programming problem in which
typically the algorithm iterates towards an approximate solution (modelled as an optimization problem). Analytical
solution-expressions are therefore faster for computing, than numerical techniques, but take a lot of effort to build
and are embodiment-specific [66]. They are especially appropriate for specific, well-defined limbs such as the
human arm subsystem. Numerical solutions can provide flexibility to better adapt to different types of kinematic

chains. In our work we try to address the IK problem in a general way, so that it can be used with any embodiment

S (End-Effector)

0 (Target)

Figure 3.2: An articulated structure (kinematic chain) as used in both Forward Kinematics (FK) and Inverse
Kinematics (IK). Also shown is a given target T that is to be reached by the end-effector S.

17

Linear approximation

Figure 3.3: The Jacobian solution as a linear approximation of the actual motion of the kinematic chain. Description
and image cited verbatim from [67].

and with any morphology, with minimum (or in absence of) parameter customization. Therefore we follow with a
brief description of some of the most popular numerical techniques.

A comprehensive summary of the most popular IK techniques has already been gathered by Aristidou et al.
[67] and is recommended to the interested reader. Given that the latter one is recent and already describes nearly
every option of inverse kinematics up to date, we will refrain from extending this literature section beyond the bare
minimum. As such we describe here only the techniques that are central to our contribution, while solely providing

a mention to various other relevant techniques such as [68, 69, 70, 71].

3.2.1 Jacobian Inverse Methods for IK

While in general, the IK problem is highly non-linear, the Jacobian methods provide linear approximations to it.
They are based on the computation and inversion of the Jacobian matrix which contains the partial derivatives of the
entire chain system, relative to the end-effectors.

An extensive explanation of these methods is provided by Buss [72] and should be consulted for more details.
The problem is illustrated by Figure 3.3. In simple terms, given the current position and/or orientation s (i.e.
transform) of an end-effector, and a target position and/or orientation # that it should achieve, let € = ¢ — &
represent the error vector (or task) between the end-effector and the desired target values, and 6 = (01, ...,6,,)7, the
current joint angles of the system, having n as the number of joints. The value m will be the dimension of € (and
consequently, of both 5 and #) and will depend on the target IK task. If the task is e.g. the 3D position constraint
or 3D orientation constraint of a single end-effector then m = 3. If it is to control both the 3D position and 3D
orientation, then m = 6. However one might choose a task that controls the orientation of only two of the rotation
axes, in which case m = 2. Alternatively, one might also require to set one end-point to a given XY position,
regardless of its position in the Z axis; in that case m would also be 2.

Note that for position control, the task is directly calculated as &€ = ¢ — &, while for orientation control many
parametrizations exist. When using Euler angles, one option is to calculate it the same way, i.e., solving at the
differential level, by using the desired angular velocity vector. When using quaternions, we may take the vector part

of the target quaternion orientation gz, and use this vector as the task.

18

" Joint j is
ij — .]
Prismatic | Revolute
Task i is Translation rot, rot, x (pos’ — pos’)
Rotation or Posture | 0 rot,

Table 3.1: Calculation of the Jacobian terms 1); ;.

The Jacobian matrix J of size m X n (rowsx columns) is a function of the current € values defined by

0s;
J(0) = < 2) 3.1
09; i
It will result in a matrix such as
i1 Y12 .. Yin

Ya1 Y22 ... Yan
J:

'@[}m,l wm,Q wm,n

where each column represents the influence of joint j over each task ¢. A simple rule for calculating each element

1; ; is presented in Table 3.1.

Let T; be the transform matrix for the frame of joint ::

7 -1 -1 - 1

rot,, rot, rot, pos
Tay Ty Tz z
Ty Tys LE2 Y
T; =
Tas Tys Tz Z
0 0 0 1

The term pBSO’i is the translation between the root frame and joint ’s frame, while rBtS’i is the z-vector of the
rotation between the root frame and joint i’s frame. Assuming that the root frame is located at [0, 0, 0] and that its
rotation is equal to I3 (i.e., Troot = I4), We can take the values of both r(_)'tg’i and p65?7i directly from matrix 7T;. If
that is not the case, then either 7; must be transformed by Tlos, or both vectors rot and pSs must be transformed by

that inverse.

Please refer to [72] or [73] for more information on how to calculate the Jacobian matrix, or alternatively to [74]

for a fully detailed description. This matrix allows to approximate the change in the end-effector’s transform given

19

an increment in the system’s joint angles of A6:
As~ JAO 3.2)
The problem will be solved by seeking a value for A such that A5 becomes approximately equal to €, by making:
€= JA0 (3.3)

This equals the question how much must I increment each joint angle 0 in order for the end-effector to move by the

amount €?

A solution to the IK problem is therefore given by equation (3.2) for A#, using the inverse of the Jacobian:
A)=J e

The implementation of any variation of the Jacobian methods typically follow a similar approach, which is as an
optimization problem that minimizes the residual error e°@ = ||&]|.

In most cases however, this equation cannot be solved uniquely, as Jacobian J may be non-square, non-invertible,
or nearly singular (which would provide poor and unstable results). Several alternatives have been found to calculate
the Jacobian’s inverse. One of them is to use the Jacobian’s transpose .J 7 instead of its inverse, and multiplying it
by an appropriate scalar o (Equation 3.4).

A0 =aJle (3.4)

Another possibility is to use its pseudoinverse J (also called the Moore-Penrose inverse of J) as shown in Equation
3.5.
A) = Jie (3.5

Using the pseudoinverse method also allows to perform a projection into the nullspace of the Jacobian, meaning
that we may further optimize the solution towards a secondary task as shown in Equation 3.6. An example of that
would be to use the end-effector’s orientation as the main task €, for which the solved A8 would minimize the error
JAO — €, while choosing a z" vector of the same dimension as €, that would attempt to keep the resulting angles as

close as possible to zero (secondary task), without disrupting the main task.

Prnn =I-JJ 36
A0 = J'€+ Py(p)Z

The Z vector can be calculated by minimizing a criterion h(6), using 7 = {Vh(0), where & is a gain factor.
Baerlocher shows an example of the typical application of keeping the joint angles as close as possible to some
desired values (e.g. to zero) [73], by using h(6, 04esired) = ||0 — Odesireall?. The example of keeping the joint
angles close to zero would therefore be to have just h(f) = ||0]|?. Alternatively, if the secondary task e is clearly

represented as a Jacobian matrix Jo, then we might also use Equation 3.7, as explained by [73].

z = (JQPN(Jl))T(eE — JQJ;ré) (37)

20

Both the transpose and the pseudoinverse methods however, suffer from either approximation errors, or from
instability near singularities. Such methods also suffer from poor results when the target is too distant from the
current position or orientations. One method to mitigate that problem is also presented by Buss [72], and consists in

clamping the € vector so that its norm is never greater than a constant value D,,,,.., as shown in Equation 3.8.
€ = ClampMag(t — 3, Dinax) 3.8)

wo o ifflw] <d
ClampMag(w, d) =

dl\:ﬁl\ otherwise

The damped least squares method (DLS), also called the Levenberg-Marquardt method further attempts to
address these issues, by including a non-zero damping constant. This constant however, must be chosen carefully
depending on the kinematic configuration of the system and on its purpose, in order to remain numerically stable
near singularities, without keeping the convergence rate too slow. Equation 3.9 shows how to calculate A using
the DLS method, where A is the damping constant, which must be carefully selected based on the details of the
multibody and expected target positions, in order to ensure stability. A larger damping value allows the solutions to
become more stable near singularities, however if the constant is too large then the convergence rate will be lower
(as it will require more iterations).

I = JT(JJT 4 N1

. (3.9)
AO=J"e

Alternatively, the DLS method may also be implemented through the Singular Value Decomposition method
(SVD), which decomposes a matrix J of m x n into three matrices U (m x m), D (m x n) and V' (n X n), such that
J =UDVT. D is the singular value matrix of .J, with its only non-zero values being along its diagonal d; ; = o,
being o; the i*" singular value of .J. Also, because o; may be zero, let - be the largest value such that o, # 0, with
o being sorted such that o; > 0;11. Based on the SVD of J and following the elaboration by [72], the DLS method

can also be expressed as in Equation 3.10:

gt (Z %)viuf
oot A (3.10)

A= Jte

As mentioned before, the major issue with the DLS technique is the selection of an appropriate damping factor.
Buss and Kim [75] address this issues with the Selectively Damped Least Squares (SDLS) method that adjusts
the damping factor for each singular vector of the Jacobian’s singular value decomposition (SVD). This method
converges faster than DLS and does not require ad hoc damping constants. First a global yy,.x is chosen, for which
they recommend a typical value to be 7/4 (45 degrees). This will be the maximum permissible change in any joint
angle in a single iteration. Then we take the SVD of .J = UDVT and express the desired change in end-effector
position as € = >, a;u; where w; is the i*" column of U and o; = (€, u;) = ul €. Let also py ; = ||0s¢/9;]| be

the relative magnitude of the change of the ¢ th task variable in response to a small change in the jth joint angle

21

(from Equation 3.1). We further define the auxiliary N and M vectors along with the selective damping factor :

Ny = llugall, Vi € [1,n]

Jj=1

i/,Z = Ui_l Z |vj1i|p€,j7Vi € [1,m],V£ € [17m]

j=1 (3.11)
M; =o)X Mi, ¢,Vi € [1,n)
N;
i = i 17 7/ 0 /max
3 =min(L,)
Finally, the SDLS solution is expressed as Af:
p; = ClampMaxAbs(o[laiviﬁi)
(3.12)

Al = ClampMaxAbs(zr: ©is Ymax)
i=1

Baerlocher introduced techniques that allow to solve the IK problem for multiple tasks with priorities, i.e., by
specifying the priority in which each task should be achieved [73]. In particular he aimed at solving the problem of
postural control for virtual humans, by allowing to specify e.g. a task for one hand to reach a certain goal position,
plus another task for the head to face a certain direction, while keeping the whole body balanced. His technique is
actually a rewritten version of the solution initially proposed by Maciejewski [76], upon also being modified to
account for algorithmic singularities. We found his approach to be the most significant one to compare to given
our goals. Equation 3.13 presents Baerlocher’s formulation of the DLS applied to two tasks €1 and €3, whose
corresponding Jacobian matrices are .J; and damping constants)\;, ¢ € [1, 2], with the first task having a higher

priority than the second.

A0 = J 6 + (oPaiay) ™ (65 — Jodf et (3.13)

He finally elaborates towards a formulation that supports more than two levels of priority, by following the same
approach. In that case, given a set of tasks [é7, €3, ..., €,], for which J; and \;, 7 € [1, p| are the corresponding
Jacobian and damping constants, with ¢ = 1 corresponding to the highest priority, and ¢ = p to the lowest, Equation

3.14 presents the general formulation for the multiple-task-priority method:
Ab; = A;_1 + (JiPy(sa)1 (6 — JiA0;)
A =J e
4! (3.14)

g |

K3

Ji

The major difference between his problem statement and ours is that his problem is especially directed at virtual

humans (VH) with many DoFs while ours is directed at robots with much fewer DoFs than the VH, therefore his

22

Algorithm 1: Pseudocode for a typical Jacobian method’s iterative solver.

input: 0, t // initial joint angles,
// target task variables (position and/or orientation)
10 « (01,...,9N)T
20«0
3 best; 0
4 besteror <+ MAX_FLOAT
5 §« ForwardKinematics(¢’); // calculate EE position and/or orientation from 6’
6 for N < 1to MAX_ITERATIONS do
7 €+ ClampMag(f— 5, Dpaz); // where t is the target position and/or orientation
8 if ||€]] < best,pr,r then
9 besteror < ||€]|
10 best; < 6
1 if ||€]] < ERROR_TOLERANCE then
12 | break
13 J « Jacobian(#’)// calculate Jacobian of ¢’
14 J~! < Calculatelnverse(.J)// using one of the possible methods
5 | G« Jt.¢
6 | 0«60 +6
17 § « ForwardKinematics(6’); // calculate EE position and/or orientation from 6’
18 end
19 return ¢ + best;

problem is more under-constrained (or redundant) than ours. One of the consequences of that is that the null-space

projection operator in his situation will allow for the secondary task to perform much better than in our case.

Finally, within his techniques, Baerlocher also suggests the use of Maciejewski’s method for computing an
appropriate damping factor based on the minimum singular value of the Jacobian [77]. Let by, be a bound on the
norm of the solution such that ||.J i Az|| < bmax, then Maciejewski’s damping factor can be calculated through

Equation 3.15.

% if o < %
A= Umin(d - Umin) lfg S Omin S d
0 if o > d (15
L la
bmax

Conclusions drawn from the comparison of several Jacobian techniques (e.g., Jacobian Transpose, Damped
Least Squares (DLS), Selectively Damped Least Squares (SDLS)), both by Buss [72] and by Aristidou [67] are that
the Jacobian methods are mostly appropriate for single end-effector situations, not always suitable for time-critical
situations (e.g. real-time computation) and the incorporation of constraints using this family of methods is neither
straightforward nor controllable towards an optimal solution. Furthermore, while the SDLS seems to be the most

promising method, it is not clear how to use it along with a secondary task.

To conclude this section we share the base pseudocode for such methods in Algorithm 1.

23

3.2.2 Data-driven, Probabilistic and Hybrid Approaches for IK

Regarding expressive posture control, Neff & Fiume have presented the Body Shape Solver [78] which addresses the
problems of pose modelling, balance, and world-space and body-space constraints into a single integrated inverse
kinematics solver for humanoid skeletons. The technique can be used by animators to solve for character poses
either based on a given set of parameters, or by selecting a shape set. However their algorithm is specific to the
human body, as it is a hybrid technique that uses both analytical and optimization methods.

Grochow et al. propose an IK system that is trained through a set of human poses [79]. The poses selected
will therefore define the style of the resulting motion. By training with different poses, one can drive the solver to
produce different styles of animation. A key feature is that it can both extrapolate a new pose from a style training
set, while also allowing to interpolate between different styles. However, despite addressing the problem of style
and expressivity of IK, the system was especially developed for motion capture, and requires off-line training, which
confines the results to be highly dependant on the quality of the training data.

Courty and Arnaud propose the Sequential Monte-Carlo IK (SMCIK) solver, that models the problem using a
probabilistic point of view, using a Monte Carlo approach [80]. The SMCIK solver is formulated as a filter whose
state is the entire complex articulated figure. An interesting aspect of the algorithm is that it produces a complete
motion, from initial position, to the target position, as a result of the optimization process. This solution however
does not offer proper control over the quality of the resulting animation, and does not guarantee that a solution is
found. Also, due to the random nature of algorithm, each execution will produce a different solution. In the best
cases, what it guarantees is the achievement of a solution, but not how consistent or reliable it is.

The Particle IK Solver, featured in the video-game Spore, was developed to allow characters with various custom
morphologies to walk naturally and to perform actions in their surrounding environment such as looking towards
a direction, or grasping an object [81]. It allows such creatures to behave coherently by performing locomotion
and animated actions in a procedurally generated world.. They preserved a traditional animation workflow so that
artists could take a central role in the development process. The main concern was to keep animations looking as
natural as possible, and allowing artists to design them in a generalizable way, so that their stylistic details could
remain across characters. The Spore engine is aimed specifically at the types of creatures used in the game, which
contain leg groups and arm groups, and perform a set of pre-determined actions. Hecker mentions that they failed to
attain naturally controlled poses using the common iterative non-linear solvers such as CCD, Jacobian methods or
Constrained dynamics. The Particle IK Solver was therefore developed to allow characters with various custom
morphologies to walk naturally and to perform actions in their surrounding environment such as looking towards
a direction, or grasping an object. Particle IK can solve for various goals by using embodiments that result in an
underdetermined system, i.e., ones that will result in more DoFs than IK goals. Therefore the remaining DoFs can
be used to achieve secondary objectives. The solver runs in two phases. First it solves for the spine of the character
and then for the limb poses, while treating the spine as fixed. Their argument was that a single-phase solver based
on existing techniques did not allow them to make specific ad hoc tuning adjustments or treat special cases, without
compromising the quality of the solution in other areas of the pose. By elaborating a new solver, they managed to
achieve local control over the solution, which was not possible using conventional IK techniques. As a down side,
the system proposed by Hecker is heavily directed at the type of creatures used in Spore, and uses techniques that

assume the existence of 3-DoF joints, which we do not consider in robotics.

24

3.2.3 Heuristic IK Techniques

This sub section presents IK techniques that are solved as an iterative search. Cyclic Coordinate Descent (CCD)
is a popular IK technique, both in computer graphics animation, robotics, and even in protein science [82, 67].
Some of its main advantages are that it is very easy to implement, fast to compute, and has linear-time complexity
regarding the number of DoFs. In each iteration it starts from the end-effector, and moves inwards towards the
base, adjusting each joint angle at a time, in order to minimize the distance between the end-effector and the target
position. This procedure is repeated until either the error is considered to be minimal, or until a maximum number
of iterations has been ran. Despite its simplicity and efficiency, the enforcing of constraints remains as a difficult
problem. Constraints are applied locally, and it does not provide an intuitive way to enforce them globally. Figure

3.4 shows the execution of CCD.

Running CCD with constrains also implies in many cases that throughout the iterative process, the solution
might not always improve, thus requiring an adequate heuristic to select the best solution from within all the ones
that were computed. It was initially designed for a single end-effector, although a multiple-chain method has been

described in [83] by dividing the structure into smaller sub-chains, and solving them each independently.

The major problems pointed out to CCD however, are the production of unrealistic and non-continuous motion
across subsequent solutions, and the overemphasising of the movement of the joints near the end-effector which

leads to unnatural motion.

Johnson has proposed an Expressive IK solution that also uses expert body knowledge (example poses given by
animators) to augment the quality of the results given by a CCD algorithm [84]. The examples are both used to
estimate joint constraints, and also to perform multi-target pose blending which would then be used as an initial

solution before the IK algorithm is ran (this step was not developed, however).

25

/,L_) P p]Q
e /
P& P,
| P
|II "I I|I 3 9
pJQ\ PQ\JB I" e
™ t N t O‘ ' ’
. N P; -
\\O D N @ ~0 ¢
P, P, P~ ®
(a) (b) (c)
p
! P, Py
S ~ /
0
P, p_Q/ P2k s
\ II‘I"" \ .. '10
P — % PO~y P PO
P, t 0 t Ot
& & P, @

(d) (e)

Figure 3.4: An example of a visual solution of the IK problem using the CCD algorithm. (a) The initial position
of the manipulator and the target, (b) find the angle 6 between the end effector, joint p3 and the target and rotate
the joint p4 by this angle, (c) find the angle 6 between the end effector, joint p2 and the target and rotate joints p4
and p3 by this angle, (d), (e) and (f) repeat the whole process for as many iterations as needed. Stop when the end

effector reaches the target or gets sufficiently close. Description and image cited verbatim from [85].

The algorithm, QuCCD, is a Quaternion-based version of the popular CCD algorithm. QuCCD includes a fast
joint-limit constraint approach similar to [86], that takes on a geometrical approach instead of clamping angles as

usual (which would require converting the quaternion to Euler angles, clamp, and then back to a quaternion).

Some of Johnson’s proposed techniques were used to animated Anemone, an expressive IK robot [87]. This
robot used a hybrid between pose-blending, for the DoFs near its base, and QuCCD, to animate the upper half, so
that it could both maintain an expressive posture, while still facing its "head" towards things in its environment.
The whole computation was performed through quaternions, holding off the conversion until "just-in-time", before
converting and sending the actual Euler angles to the motors. Despite presenting promising results for 3D animated
characters, the author does end up announcing that “this method tends to produce very slow convergence for 1 DOF

joints which are constantly bumping into a boundary”.

FABRIK is an iterative method that takes on a geometric approach to the IK problem [88, 89]. It was inspired
by the knot-tying problem [90] and borrows the idea of iterating through each joint individually as in CCD, but
instead works in the joint-position space (instead of angles), and each iteration includes a forward step (traversing

from the end-point to the base) followed by a backward step (that traverses from the base back to the end-point).

The adjustment of each joint is treated as a a problem of finding a point in a line. Figure 3.5 illustrates the
execution of the algorithm, as further described.

We must first establish that d; = | P11 — P;|, fori = 1, ..., N, is the length of each segment . FABRIK starts by

moving the end-effector Py to the target position ¢, becoming Py . This is an operation that can only be performed

26

(d)

Figure 3.5: An example of a full iteration of FABRIK for the case of a single target and 4 manipulator joints. (a)
The initial position of the manipulator and the target, (b) move the end effector p4 to the target, (c) find the joint
p03 which lies on the line 13 that passes through the points p04 and p3, and has distance d3 from the joint p04, (d)
continue the algorithm for the rest of the joints, (e) the second stage of the algorithm: move the root joint pO1 to
its initial position, (f) repeat the same procedure but this time start from the base and move outwards to the end
effector. The algorithm is repeated until the position of the end effector reaches the target or gets sufficiently close.
Description and image cited verbatim from [88].

in virtual space, as it intentionally breaks the kinematic configuration of the system by stretching the last segment.
However, after this initial move, each successive link P; is moved to a new position, towards P/ 1, following the

joint position update rule:

P =(1—-MNPi1 + AP,
i (3.16)

L —
|Piy1 — P

After the forward phase, the Root joint will most likely end up in a position that is not the Origin of the space as it
was initially. This happens because each joint, starting at the end-point, was pulled or pushed, in Cartesian space. In
order to bring the kinematic chain back to the Origin, the backward phase starts by moving the Root P; so that
Py = O. Just as in the first step of the forward phase, this operation also stretches (or shrinks) the first link to an
invalid length. So again, but now in inverse order, each joint is traversed and moved to reset the segments to their

initial length, while keeping the Root centred at the Origin, and having successfully pulled the end-point closer to

27

the target position. The backward joint position update rule is similar to the forward one:

P; = (1= X)P; + AP,
i (3.17)

D
|Piy1 — P

After the forward phase, the Root joint will most likely end up in a position that is not the Origin of the space as
it was initially.

This happens because each joint, starting at the end-point, was pulled or pushed, in Cartesian space. In order to
bring the kinematic chain back to the Origin, the backward phase starts by moving the Root L so that P, = O. Just
as in the first step of the forward phase, this operation also stretches (or shrinks) the first link to an invalid length. So
again, but now in inverse order, each joint is traversed and moved to reset the segments to their initial length, while
keeping the Root centred at the Origin, and having successfully pulled the end-point closer to the target position:

The backward joint position update rule is similar to the forward one:

Py =(1—-X\P; + AP,
i (3.18)

A= ————
|Piy1 — P

This technique was created for, and works in virtual space, as it intentionally breaks the kinematic configuration
of the system by stretching each segment during the Forward phase, which most likely ends up bringing the base
joint to a position that is not the origin of the space as it was initially. However the Backward phase solves this,
while bringing the whole kinematic solution closer to a solution. By working directly in the joint-position space,
FABRIK avoids calculation of angles, which is one of its main advantages, making it even faster to compute than
CCD. Other of its main features are that it does not suffer from singularity problems, produces naturally smooth
and continuous motion, and emphasises movement in the joints closer to the base. Following an approach similar
to [83], it also supports multiple end-effectors, and as such, full-body IK solving. Regarding the application of
constraints, the authors present successful results in a system where each link is modelled as a generic 3-DoF, by
decomposing the induced quaternions into swing and twist components, and enforcing limits on them separately
following on the method described in [86].

Starke presents the Hybrid Genetic Swarm Algorithm (HGSA) for IK, using a biologically-inspired optimization
technique as a universal IK solution for arbitrary joint chains [91]. The technique merges both the concept of
Genetic Algorithms (GA), and of Particle Swarm Optimization (PSO). GA typically provides high-quality solutions
to optimization and search problems, driven by theories of natural evolution. PSO is an optimization technique
inspired by the behaviour of bird flocks and schools of fish, following the idea that complex behaviour can emerge
from a collectivity of simpler organisms. HGSA is reported to achieve a sucess rate of nearly 100% within 10-60ms.

However it does not support multiple end-effector or self-collision avoidance.

3.3 Expressive and Animated Social Robots

This section starts by presenting existing theories and design principles that have been proposed regarding specifically

the design of robotic expression. These works are intended as broad, or general theories, without being tied to a

28

specific embodiment or application. It follows with a list of various robotic embodiments, along with example
works that have explored their expressive capabilities.

Regarding the design of believable social robots, Dautenhahn [92] divided the design process in two dimensions:
the Universal dimension, in which the universal features of a behaviour or expression are abstracted; and the Abstract
dimension, in which the designer of the behaviour or expression is free to be creative and develop a more artistically
based result.

Meerbeek et al. also follow the Universal vs. Abstract dimensions of design, stating that ’since human
expressions cannot be mapped one-to-one with expressions of the robot, we abstracted the human expressions first’
[93]. The same authors defend that the design of behaviour and expressions of robots should be a blend between an
artistic approach and an iterative cycle to evaluate and refine the result, which follows the usual practice both in
engineering and usability design. They also consider that using virtual 3D models for animating and visualizing the
expressions of a robot is useful, especially if the virtual model is designed with resemblance to the real physical
model and its behaviour.

An important expressive feature in robots that is absent in human expressivity is the use of lights and sounds.
Bethel [94] has studying the expression of emotions in robots that do not possess typical expressive capabilities fuck
a face or arms. Her work focuses on robots that are mean to be functional, such as search-and-rescue or military
robots, and how to use multi-modal expression for the correct communication of the robot’s emotional state and
empathic behaviour.

Saerbeck and Bartneck have also studied an abstraction of robot expression by attempting to correlate robotic
motion with the perceived emotions by the users [95], and concluded that there exists a correlation between a robot’s
acceleration, and the perceived arousal.

Hoffman & Ju have presented some techniques, especially based on previous experiences, about designing
robots with their expressive movement in mind [96]. They provides useful insights on how the embodiment and
expressive motion are tightly connected, and how the design of expressive behaviour may be considered as part of
the design of the actual robot, and not as an after-step.

Knight has developed the Computational Laban Effort (CLE) framework [97]. Based on the Laban Effort
System, it allows a low degree-of-freedom robot to modify its task motion in order to convey varying internal states.
The main goal is to enable an expert system from dance and acting training to be used in robotic systems, while
prioritizing task completion over expression. The process does however require multiple steps and procedures in
order to implement the framework into one particular robot, for a particular task, as described by the following five

steps:
1. Select the Laban features that the robot can use, given its degrees of freedom and task;
2. Specify the motion generation parameters for each feature;
3. Calibrate the motion generation with human experts;

4. Follow a user-centred or interactive design methodology, or machine learning approach to establish a Laban

Effort parametrization for each desired communicative state;

5. Deploy the expressive motion to the robot’s behaviour system.

29

3.4 Animated Robots

Various authors have already presented a large range of robots and papers describing the design and use of robots’
expressive behaviour. In particular, Schulz, Torresen & Herstad have recently provided a literature review on the use
of animation techniques in human-robot interaction user studies [98]. We highly recommend the interested reader
to consult that document for an extensive read on the topic. In this section we present a selected short review of
various existing social robots applications with emphasis on their expressive features and capabilities.

Out selection includes not only papers referring to studies in the field of HRI, but also to companies and research
laboratories that produce robots or are related to the field of HRI, in order to gather direct references to robots (i.e.
if it is a commercial product), or to its original release (i.e. if it is produced by a particular laboratory). We did not
include ones that we considered too outdated, nor ones designed with very domain-dependant expressive features,
both of which would not provide such a valuable knowledge for general use at date (e.g. expressivity towards
children with autism). We further recommend the reader to visit The Robot-Facebook® website, which collects a
varied set of real and fictional robots, organized into various categories. The robot list below is order by first release
or public presentation date, and within it is organized in alphabetical order. Some exceptions might occur where
more than one robot is presented together, when they have a close relation and share the same creator.

Aibo* (1992), Sony
Sony is famous for creating AIBO early in 1992, the dog-shaped robot that can play tricks and is aimed at becoming
a member of our family. Since then it has evolved through many versions, with its latest (fourth) generation dating
from 2018. In this paragraph we will refer to the AIBO ERS-7 from 2003, which belongs to the third generation
[99]. AIBO has 20 degrees of freedom, with 3 DoFs in each leg, a pan, tilt and roll joints on the head, a 2-DoF
controllable tail, plus an additional joint for the mouth, and one for each ear. Its head also features two LED panels
that can be used to display various emotional eye shapes.

PaPeRo (1997), NEC
The PaPeRo is a small childcare mobile robot with a minimal face that contains only two eye-spots (only holes, and
not actual stylized eyes) an LED for the mouth, and a pair of LEDs for the ears [100]. Its head can tilt up and down,
and pan sideways. It was used in various different scenarios with children in which it was controlled by an operator.
Within those, it could perform speech, sound and music effects, move around, and use its mouth and ears LEDs to
express itself, while reacting to face recognition, some keywords (through speech recognitions), and to touch, using
sensors spread around its body.

eMuu (2002), Christoph Bartneck
Bartneck created the eMuu robot as an abstract face containing only an eyebrow and a lip, which was sufficient to
express emotions [14]. eMuu can tilt and pan its head in order to exhibit keep-alive behaviour. Its internals were
built using Lego Mindstorms, while its outside (hull) was made of soft polyurethane.

Roomba’ (2002), iRobot
The popular autonomous robotic vacuum cleaner Roomba is considered to be the first ever robot to succeed in

the consumer and home appliance market. it has also been used in studies regarding domestic robot ecology, and

3http://robotfacebook.edwindertien.nl (accessed January 12, 2019)
“nttp://wuw.sony-aibo.com (accessed January 12,2019)
Shttp://www.irobot.com (accessed January 12, 2019)

30

http://robotfacebook.edwindertien.nl
http://www.sony-aibo.com
http://www.irobot.com

how people accept and adopt robot devices in their homes in the long term [101]. Although it appears to be an
expressionless robot, it is, in first instance, a mobile robot which can move forwards and turn 360°in place, thus
allowing it to perform expressive motion through its trajectory. Additionally, the robot allows to be hacked and
extended. Roomba has been coupled with an RGB-LED mood ring, which allows it to communicate using a
multi-color halo [102], and has also been added an expressive tail, which, inspired by canine behaviour, can wiggle
to signal certain events and emotions, such as wiggling happily when it finds dust and dirt, or exhibiting an fearful,
apprehensive posture when it becomes stuck [103].

Interactive Theatre (2003), MIT Media Lab
In 2003, Breazeal and colleagues presented the Interactive Theatre [29]. This is one of the first robot animation
systems to be developed with interactivity in mind, by blending Al and an artistic perspective. Several robotic
anemones were animated in collaboration with animators to portray a lifelike quality of motion while reacting to
some external stimuli like the approach of a human hand. These animations were driven by parameters which
were controlled by a behaviour based Al to dynamically change the appearance of its motion depending on events
captured by a vision system [104].

Kismet® (2003), MIT MedialLab
The Sociable Machines Project at the MIT Media Lab developed Kismet, an expressive robotic face with stylized
anthropomorphic features [105, 30]. It is equipped with visual, auditory and proprioceptive capabilities, and can
express itself through vocalizations, facial expressions, gazing and eye- and head-direction. It contains a total of
15 DoFs in its face, which control its ears, eyebrows, eyelids, lips and jaws. Its affective state is based on a PAD
space (arousal, valence and stance), and specifies 10 emotions: fear, sorrow, surprise, boredom, joy, interest, disgust,
calmness and anger. Based on each emotions PAD position, Kismet can also display emotions that result of blending
between these.

QRIO’ (2003), Sony
QRIO is a bipedal humanoid entertainment robot, approximately 60cm tall, with legs that can be used for postural
expression of to walk and run at up to 23 cm/s, arms that can be used to perform gestures and balance, and a face
that contains only two illuminated eyes slots [106].

Leonardo® (2004), MIT MedialLab
One of MIT Media Lab’s most famous robots is Leonardo, a 65-DoF robot that is approximately 75cm tall and
has been specifically designed for expressive social interaction with humans [107, 108, 104]. It was designed
as an anthropomorphic furry creature in collaboration with Stan Winston Studio °. Leonardo can interact and
communicate with people through speech, vocal tone, gestures, facial expressions, and also perform simple object
manipulations. Inspired by Kismet, its computational architecture contains affective factors that influence and
interact with the cognitive elements of the system. It affect space is however modelled in a two-dimensional system
(valence and arousal) over which seven facial poses are defined.

Robosapien'? (2004), WowWee

The Robosapien X is a biomorphic toy robot that can either be programmed to perform entertaining moves, or be

Shttp://www.ai.mit.edu/projects/sociable/baby-bits.html (accessed January 12, 2019)

"http://www.sony.net/SonyInfo/CorporateInfo/History/sonyhistory-j.html (accessed January 12, 2019
p ¥ ¥ P y y ¥y-1J ry

8nttp://robotic.media.mit.edu/portfolio/leonardo (accessed January 12, 2019)

9http ://wwu.stanwinstonschool. com (accessed January 12, 2019)

Onttp://wowwee.com/robosapien-x (accessed January 12, 2019)

31

http://www.ai.mit.edu/projects/sociable/baby-bits.html
http://www.sony.net/SonyInfo/CorporateInfo/History/sonyhistory-j.html
http://robotic.media.mit.edu/portfolio/leonardo
http://www.stanwinstonschool.com
http://wowwee.com/robosapien-x

remote controlled using a control with 21 different buttons. It was used in an early example of trying to evoke
the illusion of life in robots through character animation practices [109, 110]. However the authors explore a very
shallow concept of the illusion of life, and present character animation practices as the designing of animations for
robots using 3D animation software (Autodesk Maya), from which the exported motion requires a post-processing
step to correct for the robot’s balance.

iCat!! (2005), Philips Electronics
The iCat is a plug and play desktop robot that can perform facial expressions, move its head around, display
expressive lights, and to respond to touch on its paws. As the name suggests, it is designed to resemble a cartoonish
cat, with expressive eyebrows and a eyelids, orientable eyes and its rubber lips that allow to portray smooth mouth
shapes. It became notoriously useful and popular as a robot that is ideal for interaction with children, and in
scenarios in which personality and animation qualities play a role [9, 111]. In particular, Leite et al. developed and
autonomous scenario for long-term interaction in which the iCat plays and teaches chess to school children [112]. It
explores an empathic model that drives the robot’s emotional display and decision-making, by e.g. allowing the child
to choose another option after selecting a bad move, feeling sad when the child performs bad, and remembering and
recalling on previous interactions.

Keepon12 (2007), Hideki Kozima, National Institute of Information and Communications Technology, BeatBots
LLC
The Keepon is a small yellow table-top robot that is shaped like two glued tennis balls (albeit yellow) [113]. However
unlike tennis balls, its body is made of soft rubber, which allows it to bend, squash and stretch while performing
motion based on its four motors: pan, tilt, roll and bounce (stretching up and down). It has two decorative eyes and
anose. It is distinguished as a very simple, minimalist, small and affordable robot that is also child-friendly. With
that purpose, it was used on a collaborative build-a-rocket computer game [114]. As a minimalistic, abstract robot,
it was used to explore Laban Efforts by Knight & Simmons [115]. Because the Keepon contains no sensors, it relies
on external ones such as a Microsoft Kinect, to provide user-perception. It was also used in the E-Fit scenario, in
which the robot is delivered to people’s homes so that children can interact with it daily. The robot takes the role of
an alien whose space ship broke down on Earth and who needs help from the child in order to return home. The
child helps the robot by exercising routinely and transferring the acquired "energy" to the robot by doing so [116].

Nexi'? (2007), MIT Media Lab
The Nexi robot, created by MIT Media Lab, is an anthropomorphic robot consisting of a very expressive face, placed
on a self-balancing two-wheeled mobile base which also has two arms and hands [117, 104]. Its head and neck are
highly polished and white, with smooth edges that convey a stylized human like look. In order to be expressive it
can move its eyebrows, mouth, and orbit its eyes, all while performing 3D motion with its head (pan, tilt, roll).

Paro'* (2007), Intelligent Systems Research Institute, AIST
The Paro is a seal-shaped therapeutical robot that is considered to convey a healing effect, especially in the elderly
population [118]. Its body is soft and furry, and is equipped with tactile sensors that allow it to respond to human

touch. It also contains a light sensor, sound source direction detection, speech recognition and balance sensors.

11http ://robotfacebook.edwindertien.nl/product/icat (accessed January 12,2019)
2http://beatbots.net/my-keepon (accessed January 12, 2019)

13http ://robotic.media.mit.edu/portfolio/nexi (accessed January 12, 2019)
Ynttp://www.parorobots. com (accessed January 12, 2019)

32

http://robotfacebook.edwindertien.nl/product/icat
http://beatbots.net/my-keepon
http://robotic.media.mit.edu/portfolio/nexi
http://www.parorobots.com

While shaped like an animal, it is not intended to move around freely. Instead it was designed to be held by a human
or kept in its lap, and can express itself through neck movements, front and rear fin movements, and independent
eyelid movements.

Zeno' (2007), Hanson Robotics
The Zeno Robokind Zeno is a humanoid robot with a mechanical structure that is similar to that of the NAO, but
featuring a very expressive lifelike face. A particular work that we found explains how a closed-form IK system
was built for such a robot [119]. A closed-form solution is an analytical solution, made specifically for this robot.
However, the authors describe how they captured a human motion using the Microsoft Kinect, and then transferred
that motion to the Zeno using the mentioned closed-form IK solution.

AUR (2008), MIT Media Lab
The AUR is a robotic desk lamp with 5 DoFs and an LED lamp which can illuminate in a range of the RGB color
space [120]. It is stationary and mounted on a workbench. It is controlled through a hybrid control system that
allows it to be used for live puppeteering on stage, as an actor. The purpose was to allow the robot to be expressive
while also being responsive. In general, a responsive robot would not have proper control for its expressivity, while a
properly expressive robot would have to rely on pre-designed animations, and as such. Considering their case, robots
used on stage were generally controlled by several extensively trained puppeteers, and still, proper eye contact was
virtually impossible to achieve. For AUR, the motion was composed through several layers. The bottom-most layer
moves each DoF based on a pre-designed animation that was made specifically for the scene of the play. If the robot
was set to establish eye contact, several specific DoFs would be used to calculate an IK solution using CCD, and the
result was used to override the motion of the scene layer. A final animacy layer added smoothed sinusoidal noise,
akin to breathing, to all the DoFs, in order to provide a more lifelike motion to the robot.

NAO'® (2008), Aldebaran Robotics, Softbank Robotics
The NAO robot is one of the most popular robots used in research and in human-robot interaction. We will mention
some works that we have found to contribute specifically to autonomous expressivity using this robot. Our own
previous work has included NAO into the Nutty Tracks animation engine that allows animators to create expressive
behaviours for the robot and to merge them with procedurally-based motion [121]. It has also been used within
the SERA ecosystem for the EMOTE project, in which NAO became an autonomous empathic robotic tutor for
classrooms [42]. In EMOTE, the robot interacted simultaneously with two children and with a virtual learning
application that was running on a large touch table. The behaviour of the robot was designed to drive the children’s
attention to the learning application and learning goals, while still providing social behaviour as both a peer and
a tutor. In general attention was directed through gaze and gestures, with gaze being controlled with a gaze-state
machine that considered gaze-breaking, or gazing towards the students’ actions (e.g. gazing at them when they were
speaking, or directly at the point of the touch table where they clicked). The robot relied on a Microsoft Kinect and
on lavalier microphones in order to manage its gazing between the students’ actions, the task, and its own actions. In
[122], NAO was used as an autonomous social robotic tutor for second language learning in a one-to-one setting. Its
behaviour was also designed for high nonverbal immediacy, with random gazes towards the child, gestures during
speech, forward lean of the body, and keeping the arm’s motors noises low to give the impression of being relaxed.

The work by [123] also presents NAO as a robotic tutor, in a factions calculation scenario for school children. A

15http ://www.hansonrobotics. com/zeno (accessed January 12, 2019)
Onttp://www.softbankrobotics.com/emea/en/nao (accessed January 12, 2019)

33

http://www.hansonrobotics.com/zeno
http://www.softbankrobotics.com/emea/en/nao

less recent but relevant work that explores the expressivity of the NAO robot is [124], where the LEDs of the robot’s
eyes are used to provide it with eye shapes. While NAO does not have mechanical eyes, and was not designed to
provide expression through them (except for changing the colors of the LEDs), the authors suggest an interesting
control of individual LEDs to create expressive eye shapes for Neutral, Happiness, Sadness, Anger, Fear, Disgust
and Surprise.

Simon (2008), Georgia Institute of Technology
Gielniek, Thomaz and colleagues have been exploring ways of actually algorithmizing some of the principles of
animation as motion signal processing algorithms which can be used in real time, as they demonstrate using the
Simon robot (e.g, [32]). In particular they created an algorithm that generates exaggerated variants of a motion in
real-time, relying only on one tuning parameter «, as the authors believe optimality is context-dependent and so the
exaggeration factor should be controllable.

CoBot'’ (2009), Carnegie Mellon University
The CoBots are a family of mobile indoor service robots that have been developed at the Carnegie Mellon University
since 2009. They operate on a four-wheeled omnidirectional drive, have a touchscreen for direct user input, and a
container to carry and deliver diverse objects [125]. The CoBot robots perform autonomous indoor localization in
order to navigate through multiple levels of a building. In order to use the elevator, they resort to shared autonomy,
i.e., while placing themselves in from of an elevator door, they will 1) call out for some by-passer to press the
elevator button; 2) ask someone in the elevator to press the button corresponding to its destination level. When faced
with an obstacle, it can also perform an auditory notification so that people can clear away its path. Additionally,
light can be appended to it in order to further reveal its internal state [126]. Thanks to its omni-drive, it can perform
complex motions, which may also be exploited for their expressivity. Knight & Simmons have explored the use of
Laban Effort Features to perform expressive motion in the XY (horizontal travel) and in the 8 (rotation) dimensions.

HERB (2009), Carnegie Mellon University
HERB, the Home Exploring Robotic Butler is a mobile robot with two large arms with hands that can grasp
objects (the first version had only one arm) [127, 128]. The challenge of providing legible and predictable motion
to autonomous collaborative robots has been addressed by Dragan et al. using the HERB robot [129], which
demonstrates the benefits of including such properties into motion planners. Their technique however focuses on
these two properties in particular, and rely on motion-planning for trajectory generation. Admoni has also used
HERB to study nonverbal communication in socially assistive HRI [130].

iCub'® (2009), Italian Institute of Technology
The iCub is a humanoid robot that was developed for research in embodied cognition [131]. It mimics a three and a
half year old child, is able to crawl and sit while manipulating objects.

Mung (2009), Korea Advanced Institute of Science and Technology
The Mung robots are a set of three simple shaped robots consisting only of a round body and two eyes [132]. The
three versions of it correspond to a bread-bun-shaped body, to an egg-shaped body, and to a pot-shaped robot. The
bodies are made of translucent acrylic in order to allow it to display infernal emotional states using color LEDs.
The eyes are made of metal. Using the internal LEDs, the robots can exhibit various expressions which are seen

through its translucent body as bruises or blushes.

Thttp://www.cs.cmu.edu/"coral/projects/cobot (accessed January 12, 2019)
Bhttp://www.icub.org/ (accessed January 12, 2019)

34

http://www.cs.cmu.edu/~coral/projects/cobot
http://www.icub.org/

Snackbot (2009), Carnegie Mellon University, United States Naval Academy
The Snackbot robot is a service robot with a minimalistic anthropomorphic shape, with a simple head, and two
non-functional arms that hold a tray upon which it can carry objects [133, 134]. In particular, as its name implies, it
was created to deliver various types of snacks within two connected buildings. It uses a differential-drive mobile
base along with bumpers, sonars and a laser scanner in order to navigate while detecting and avoiding collisions.
The head was designed with interesting factors in mind. It is round, but wider than taller, in order to suggest it
being a young, friendly robot. The details of the eye sockets were kept minimal so that the customers would not
develop false expectations about the robot’s intelligence. A 3x12 LED display was placed on the mouth region in
order to convey more meaningful expression such as lip shapes, colours and movement during interaction. Finally,
minimalistic non-functional ears were also added so that the customers would understand that the robot could hear
them.

AIDA' (2010), MIT Media Lab
Various interactive social robots have been created at MIT’s Media Lab [104], in particular the AIDA, which is
a friendly driving assistant for the cars of the future. AIDA interestingly delivers an expressive face on top of an
articulated neck-like structure to allow to it move and be expressive on a car’s dashboard.

PR-2%° (2010), Willow Garage
The use of animation principles was explored by Takayama, Dooley and Ju [31] using the PR-2 robot. This is a large
mobile robot with two arms, that can navigate in a human environment. A professional animator collaborated on the
design of the expressive behaviour so that the robot could exhibit a sense of thought, by clearly demonstrating the
intention of its actions. Thought and Intention are two concepts that are central in character animation, and in the
portrayal of the illusion of life. In this case they focused on making both the intention of the robot, and the robot’s
reaction to its own action more readily apparent to interactants and bystanders, in order to facilitate coordination of
their actions with those of the robot. They formulation a robot’s animations as functional motions (e.g. grabbing a
door knob), and expressive motions (e.g. looking at the door handle and scratching its head), although these are
not completely separate concepts (e.g. in some situations being expressive is a functional part of the task). The
conducted a study measuring readability of robot forethought, perception of robot forethought, and perception of
robot reaction, and conclude that showing forethought makes a robot seem more appealing and approachable.

Robovie?! (2010), Vstone Co., ATR
Vstone Co. and ATR created the Robovie (R3) robot, which is a healthcare and guide robot. Its mobility is enabled
by an omni-wheel base, while its body is anthropomorphic, with arms and a nearly faceless head. Its face contains
only two eye placeholders, which do not move, but instead, contain cameras that allow it to perceive its surrounding
environment.

Shimon and Travis (2010, 2012), Georgia Institute of Technology, IDC Herzliya
Hoffman has created interactive robots that behave in a musical environment. Shimon is a gesture based musical
improvisation robot that plays marimba [135]. Its behaviour is a mix between his functionality as a musician, for
which he plays the instrument in tune and rhythm, and being part of a band, for which he performs expressive

behaviour by gazing towards his band mates during the performance. Travis is a robotic music listening companion

Yhttp://robotic.media.mit.edu/portfolio/aida (accessed January 12, 2019)
nttp://www.willowgarage . com/pages/pr2/overview (accessed January 12, 2019)
2lhttp://www.vstone.co.jp/english/products/robovie_x (accessed January 12, 2019)

35

http://robotic.media.mit.edu/portfolio/aida
http://www.willowgarage.com/pages/pr2/overview
http://www.vstone.co.jp/english/products/robovie_x

also created by Hoffman, that acts as an interactive expressive music dock for smart phones [136]. The system
allows a user to dock a smartphone and request it to play a music from some play-list. The robot plays it through a
pair of integrated loudspeakers while autonomously dancing to the rhythm. The music beat is captured by real-time
analysis in order to guide the robot’s dance movements. Those movements are simple "head banging" and "foot
tapping" gestures that are easily programmable. Both robots are controlled by a similar control system that relies on
dead-reckoning. Beat-matching is insured by an overshoot and interrupt approach, and the motion is smoothed using
a high-frequency trajectory interpolator, insuring that the final motion is rendered at a fixed rate of S0Hz. The authors
present two main advantages to this approach: (a) they are "able to generate a more expressive spatio-temporal
trajectory than just a trapezoid, and we can add animation principles such as ease-in, ease-out, anticipation, and
follow-through"; and (b) "since the position of the sliders is continuously controlled, collisions can be avoided at
the position request level".

Sparky?? (2010), Walt Disney Imagineering Research
The Walt Disney Imagineering Research & Development has developed the stylized anthropomorphic Sparky
Minimatronic™. It is a robotic marionette that uses 18 R/C servo motors: 4 for each arm, 2 for each leg, 2 for the
neck, 1 for the mouth, 1 for the eyes, 1 for the eyelids, and 1 for its spine [137]. Its puppet-like structure allows it to
be lightweight and to perform highly dexterous, fluid and natural movements.

EMYS (prototype, commercial)*>* (2010, 2018), Wroctaw University of Technology, EMYS Inc.
The original EMYS robot was developed back in 2010 for the EU FP7 LiREC project®* [138]. Pereira and colleagues
showcased an EMYS robot that continuously interacts with both users and the environment while playing a multi-
player board-game, in a way to provide a more lifelike experience® [139]. This was the first autonomous robot
to interact simultaneously with several human players through a video game running on a large touch-table. The
social nature of this application required EMYS to be able to blend several animation modalities in real time, such
as gazing towards a person while performing an expressive emotional animation, or changing the overall look of
its idle behaviour in order to portray its internal emotional state, while still reacting to the presence of the other
players. Such highly expressive requirements lead the creators to also drive inspiration from animation principles
and practices, and designed EMYS’s animations following an artistic approach, thus becoming one of the first
autonomous social robots to be animated using professional animation software [22]. These technical developments
were later extended and became the Nutty Tracks animation system that can be used for any robotic embodiment
[121]. More recently, EMYS has been used along with Nutty Tracks to play the Sueca card game, in which human
users play with the robot using real physical cards [140]. Note that all these works refer to the prototype Emys
(2011), which was developed in two versions: MkI and MKII, while we add a reference to the new commercial
version of Emys (2018) which is being released soon and although it contains many of the features of the prototype
Emys, its design and build was revamped and some of its expressive channels were removed or modified (e.g. no
neck tilt, but eyes became LCD displays and includes and additional screen display)

Probo (2011), Ghent University, Vrije Universiteit Brussels

The Probo huggable robot is used for robot assisted therapy applications. It was designed with the purpose of

22https://rasc.usc.edu/sparky.html (accessed January 12, 2019)
Bhttp://emys.co (accessed January 12, 2019)

2http://lirec.eu (accessed January 12, 2019)
Bhttp://vimeo.com/56200151 (accessed January 12, 2019)

36

https://rasc.usc.edu/sparky.html
http://emys.co
http://lirec.eu
http://vimeo.com/56200151

exhibiting the illusion of life so as to facilitate engaging interactions with humans, which is especially relevant
within social therapy applications [141]. The robot has a fully actuated head with 20 DOF capable of communicating
emotions an attention, and is implemented as a semi-autonomous system, with shared control with a human operator.
The system is composed of various modules such as Perceptual-System, a Control-System, an Expressional-System,
and a Motor-System. The first two working together allow the robot to track a certain face or object, or to gaze
towards a the direction of a sound source. Within the Control-System there is also an emotional state that is based
on internal needs (modelled as a homeostatic system), which are influenced by the perceived actions, and influence
the selection of its expressive behaviour (facial expressions). The authors argue that this composition in which each
block has its own functionalities allows them to be used with other robots or agents. The animation system allows to
combine pre-designed motion sequences with direct control from the operator. It includes several graphical tools
that allow the authoring of keyframe-based animations (Sequence Editor), and real-time operation and manipulation
of how these are mixed and played-back on the robot (Animation Player and Motion Mixer). The various outputs
are combined using a Combination Engine, which considers several types of keyframes to specify how overlaid
animation sequences should be blended. In order to allow a smooth initiation and termination of an animation
sequence, when played over another previous sequence or expression, each sequence must be authored in order
to consider an initial time-interval during which the underlying motion can be blended out of, and then back into.
The resulting motion is filtered using a cascade of first order software low-pass filters, with a different attenuation
parameter used for each body part.

Sphero®® (2011), Sphero
Sphero is a spherical robot launched in 2011 that can move by rolling under control of a smartphone or tablet.
While it seems not to contain any expressive features it can in fact portray an expressive character through motion
and through its lights. Faria et al. developed communicative intentions using the Sphero ’s motion in order to get
attention, to convey that it wanted a person to follow it and to express happiness and sadness [142].

Baxter?’ & Sawyer 2 (2012, 2015), Rethink Robotics
Both Baxter and Sawyer were developed by Rethink Robots, a company founding the Rodney Brooks, the same
founder of iRobot, which created Roomba. Their first robot was Baxter, an industrial collaborative robot meant
to work together with employees at factories and warehouses. It has two arms and a screen that can be used to
display information or an expressive face to its users. It is supported by an adjustable pedestal, which can make it
up to around 1.9 meters tall, and weigh around 140Kg. Its purpose is mostly to perform repetitive tasks such as
loading, unloading, sorting and handling materials, and can be programmed to do so on-site by an employee without
much effort or training. Baxter was later discontinued and succeeded by Sawyer, which is slightly more compact
given that it has only one arm, but its design and functionally meet the same targets as Baxter’s. Besides working in
industrial settings, it has also been used to perform handwriting tasks [143] or to play games with people [144].

Dragonbot?® (2012), MIT Media Lab
The Dragonbot, developed by MIT’s Media Lab, is a small furry desktop robot with a dragon-like appearance [145].

It is particularly aimed at child applications such as educational games [146] The robot can perform squash-and-

26http://wwu . sphero. com (accessed January 12, 2019)
?Thttp://robots.ieee.org/robots/baxter (accessed January 12, 2019)

28http ://wwu.rethinkrobotics.com/sawyer (accessed January 12, 2019)
Phttp://robotic.media.mit.edu/portfolio/dragonbot (accessed January 12, 2019)

37

http://www.sphero.com
http://robots.ieee.org/robots/baxter
http://www.rethinkrobotics.com/sawyer
http://robotic.media.mit.edu/portfolio/dragonbot

stretch through its internal Delta robot platform, which can move its body in 4 DoF. A stretchy synthetic fur allows
its shape to go along with the movement with a natural look. It additionally has a neck tilt DoF and a wiggable
tail. Two hands are used solely as adornments given that they do not have any actuated movement. One of its most
interesting features is that it is fully controlled through a smartphone which is inserted in a slot on its face, and
therefore the smartphone’s screen acts as the robot’s expressive eyes.

Karotz*® (2012), Violet (extinct), Mindscape
The Nabaztag robots are ambient smart electronic devices shaped like a rabbit. Karotz is the third and final
generation. Its two ears can be controlled to portray different stances, along with internal RGB lights the illuminate
portions of its body. However most of its communication is performed audibly, either through speech or by playing
sounds and music. Even as a simple platform, its communicative capabilities and minimalistic, stylized form and
expressivity have lead it to be used in user-studies directed at the usefulness, adoption and engagements that people
feel towards such having devices in their households [147, 148].

Furhat®' (2013), Samer Al Moubayed, Furhat Robotics
The Furhat is a hybrid robotic head that provides rich and fluent multimodal interaction using speech, head motion
and facial expressions [149]. It’s face is backprojected into a physical, translucent mask, using an internal micro
projector. It is then digitally animated in a way that matches the design of the physical mask. The backprojection
face method solves the problem of fluent and natural facial expression, given that such face and expressions are all
rendered using CGI techniques, and therefore it is not constrained by the dynamics of mechanical servos or artificial
skin. Displaying a virtual face on a 3D surface, in contrast to using a 2D display also allows it to perform better in
multiparty interaction by eliminating the Mona Lisa gaze effect [150].

Jibo*? (2014), Jibo Inc.
The robotic home assistant Jibo presented in 2014, created by MIT Media Lab professor and social robotics pioneer
Cynthia Breazeal. It is a small tabletop robot that is somewhat shaped like a spotlight. Its light is however an LCD
touchscreen which allows for bidirectional interaction, i.e., for the robot to display information, expressive and
emotions, but also for the users to directly interact back with it. Additionally it has two speakers that allow it to
speak, play sounds and music. In order to perceive the users and surrounding environment, it contains full body
touch sensors and can perform 360°sound localization. One of the most interesting features in Jibo’s design is the
way its body with a tilted triple-pan full-revolute mechanism. Its body can be seen as composed of two parts: its
torso and its head. Both the torso and the head can pan, however both pan at an angle, which allows Jibo to modify
the apparent shape of its body while these two joints pan in inverse directions. Additionally the base of the torso can
also pan in order to perform these shapes towards any direction.

Pepper33 (2014), Aldebaran Robotics, Softbank Robotics
The Pepper robot is developed by Softbank Robotics (formerly Aldebaran Robotics) and is a modern stylized
humanoid following the design of the same company’s NAO robot. However Pepper is 1.2 meters tall, and stands
on a mobile base, which gives it a better ability to interact with human in their natural environments [151, 152].

Pepper can express itself through its omnidirectional motion [153], using its arms to perform gestures, speech, a

Onttp://www.nabaztag.com (accessed January 12, 2019)

3http://www. furhatrobotics. com (accessed January 12, 2019)

http://www. jibo. com (accessed January 12, 2019)
Bhttp://www.softbankrobotics.com/emea/en/pepper (accessed January 12, 2019)

38

http://www.nabaztag.com
http://www.furhatrobotics.com
http://www.jibo.com
http://www.softbankrobotics.com/emea/en/pepper

tabled that is attached to its chest, or its face which can either move around (pan, tilt) or by changing the colour of
the LEDs surrounding its eyes and ears.

Kip13** (2015), IDC Herzliya
The Kipl desktop robot was designed to promote non-aggressive conversation between people. By monitoring
a conversation’s tone, it reacts with an emotional display of fear whenever the conversations seems aggressive,
otherwise performing a calm behaviour designed to communicate curious interest. The robot’s figure is reminiscent
of a lamp and designed to be both peripheral, evocative and fragile. It has a pan base that can rotate the robot
towards any direction, a tilting head mechanism that is activated by a string, and a multi-action linkage that allows
the robot to seem to stretch and squash. Additionally, the head, being modelled as a passive DoF, reacts to the
robot’s shaking and gravity, giving it a more natural feeling, in what can be seen as the overlapping principle of
animation (despite it being called secondary action by the authors, upon consulting [4] or [154] one finds that it is
in fact overlapping action). [155]

Cozmo & Vector> (2016, 2018), Anki
Both Cozmo and Vector are a mix between a home assistant and a smart toy robot, both developed and sold
commercially by Anki. Cozmo was their first robot, and was succeeded by Vector. Both robots follow the same
principles and design, although Vector contains additional computational features such as speech recognition. They
are designed as a small truck, with an active forklift that can both play a functional roll (interact with and lift
up objects) and an expressive roll (raise and shake like they were its hands). It moves on two tank-like tracks,
which allows it to move forwards and backwards while turning and also to rotate in place. Its most distinguishing
feature is the expressive screen, which is used mostly to display its eyes, but can also display other information,
icons, animations, expressions, ir even be used as a game screen. All the expressions were carefully designed by
professional animators with previous experience in the movie industry, which endowed Cozmo and Vector with the
illusion of life, making them into some the most successful consumer robots for the home environment.

Buddy?® (2016), Blue Frog Robotics
Bluefrog Robotics presented Buddy, a small home companion robot aimed at various tasks such as home assistance,
elder care, entertainment and edutainment [156]. It has a mobile base with three wheels and sensors that allows it to
perform house mapping, localization and collision and obstacle avoidance. Its head is supported on a pan-tilt neck
and contains a screen where it displays and expressive face or applications and games.

Adelino’” (2017), Tiago Ribeiro, INESC-ID
The Adelino robot was created by ourselves in the context of this thesis. It is a craft, 5-DoF articulated desktop robot
with a simple face containing only two LEDs that can blink or change in brightness. Its design was inspired both by
an animated snake, and from lines of action, an element that is intrinsically part of character animation. It has been
used as autonomously for games and entertainment [157], which we will further describe in Sections 7.3 and 7.4.
As an articulated structure, similar to an industrial manipulator, it requires inverse kinematics that can solve both for
orientational and full-body postural targets in order to convey motivation, intention and emotional expression to its

users. Given that it was developed in the context of this thesis, it will be further described in detail in Section 7.2.1.

3http://milab.idc.ac.il/teaching/projects/kip (accessed January 12,2019)
Shttps://anki.com (accessed January 12, 2019)
36http://www.bluefrogrobotics.com/robot (accessed January 12, 2019)
3Thttps://tiagoribeiro.pt (accessed January 12, 2019)

39

http://milab.idc.ac.il/teaching/projects/kip
https://anki.com
http://www.bluefrogrobotics.com/robot
https://tiagoribeiro.pt

YOLO? (2017), Patricia Alves-Oliveira, Cornell University
The YOLO (Your Own Living Object) is a minimal abstract robot designed for child-robot interaction [158, 159]. It
is aimed at stimulating creativity during play, and uses implicit interaction modalities such as motion and lights
to communicate with children. The lights can display different colours using various brightness levels to convey
emotional expressions and personality. Using its three omni-wheels it can also reactively and proactively interact
with children by navigating in any direction and by performing different navigation patterns at varying speeds.

Blossom™ (2018), Cornell University
The Blossom is an open-source desktop social robot that uses a tensile mechanical structure to perform smooth,
natural and safe movements, while being covered by handcrafted replaceable skins such as knitted or crocheted ones
[160]. Besides its unique and distinguishable craft appearance, its internal mechanisms, built using servo-controlled
strings and elastic bands, allow it to exhibit squash-and-stretch, and to perform a wide variety of natural movements
that to not appear to be mechanical. Additional custom appendages can be added to its head, which can also be
controlled using a servo. Its internal structure is built mostly out of laser-cut wood or acrylic.

CLOi* (2018), LG Electronics
The LG Electronics company has released a series (or family) of CLOI robots, designed and built with various
purposes in mind [161]. This robot family includes a robot for the home, a lawn mower robot, a guide bot, a large
cleaning bot, a transporter bot (e.g. to carry luggage), a serve bot (e.g., butler), and a cart bot (e.g., for shopping),
each aiming at different application scenarios. All except the lawn mower and cleaner bot exhibit a display with
a minimalistic face, representing a minimal face that is used as a point of attention for users, to express gazing
direction, and various other facial expressions.

Walt*! (2018), Vrije Universiteit Brussels, Hasselt University, Melexis, Audi, Softkinetic, AMS Robotics,
Robovision
Walt is a social collaborative robot that that helps factory workers assemble cars [162]. It uses a screen to exhibit an
expressive face, icons or short animations. Its body is a concealed articulated structure that allows it to gaze around
at its co-workers.

Kiki*? (2019), Zoetic Al
The Kiki robot created by Zoetic Al is a small desktop robot [163]. It has a fixed torso base with a pan-tilt neck and
a head that resembles some animal with small ears such as a kitten or a fox. Its face is a screen with eyes that can

display a wide variety of expressions, and its Al is focused on delivering personality, affection and attachment.

Bhttp://patricialvesoliveira.com (accessed January 12, 2019)
Phttp://guyhoffman.com/blossom-handcrafted-soft-social-robot (accessed January 12, 2019)
“Opttp://www.lg.com/global/lg-thing-appliances/cloi (accessed January 12, 2019)

4mttp: //www.sulu.be/Walt (accessed January 12, 2019)

“nttps://www.kiki.ai (accessed January 12, 2019)

40

http://patricialvesoliveira.com
http://guyhoffman.com/blossom-handcrafted-soft-social-robot
http://www.lg.com/global/lg-thinq-appliances/cloi
http://www.sulu.be/Walt
https://www.kiki.ai

Chapter 4

Robot Animation in Theory

4.1 The Principles of Robot Animation

In the context of social robotics, our understanding is that robot animation is not just about motion. It is about making
the robot seem alive, and to convey thought and motivation while also remaining autonomously and responsive.
And because robots are physical characters, users will want to interact with them. Therefore robot animation also
becomes a robot’s ability to engage in interaction with humans while conveying the illusion of life.

One of the major challenges of bringing concepts of character animation into Human-Robot Interaction (HRI)
is at the core of the typical animation process. While in other fields, animation is directed at a specific story-line,
timeline, and viewer (e.g. camera), in HRI the animation process must consider that the flow and timeline of the story
is driven by the interaction between users and the artificial intelligence (Al), and that the spacial dimension of the
interaction is also linked to the user’s own physical motion and placement. Robot animation becomes intrinsically
connected with its perception of the world and the user, given that it is not an absent character, blindly following
a timeline over and over again. This challenge is remarkable enough that character animation for robots can and
should be considered a new form of animation, which builds upon and extends the current concepts and practices of
both traditional and Computer-Graphics (CGI) animation and establishes a connection between these two fields and
the field of robotics and Al

Various authors have previously moved towards the idea of robot animation, as a well specified field that could
even include its own principles of animation. Van Breemen initially defined animation of robots as *The process
of computing how the robot should act such that it is believable and interactive’ [9]. He also showed how ’Slow
In/Out’ could be applied to robots, although he called it Merging Logic.

Wistort has also proposed some principles that should be taken in account when animating robots, that do
not accurately follow the ones from Disney [164]. His list of principles refer to ’Delivering on Expectations’,
’Squash and Stretch’, *Overlapping/Follow through animation’ (although he refers to it as Secondary Action),
’Eyes’, "Illusion of Thinking’ and ’Engagement’. We actually consider that *Delivering on Expectations’ implies the
same as Disney’s *Appeal’, "Illusion of Thinking’ is related to ’Anticipation’ and ’Engagement’ refers to ’Staging’.
Furthermore it is discussable whether or not Eyes must be part of robots at all.

Takayama et al. have focused on the use of Anticipation, Engagement, Confidence and Timing to enhance the

41

readability of a robot’s actions [31]. Once again, the authors refer to "Engagement’, when in fact they do *Staging’.
Indeed, ’Staging’ doesn’t sound like a correct term to use in robot animation, because for the first time, we are
having animated characters in real settings, and not on a set-up stage.

Mead and Mataric also addressed the principles of Staging, Exaggeration, Anticipation and Secondary Action
to improve the understanding of a robot’s indentions by children with autism [137]. For exaggeration, they were
inspired by a process used in the generation of caricatures by exaggeration of the difference from the mean.

More recently, Gielniak et al. have sucessfully developed an algorithm that creates exaggerated variants of a
motion in real-time by contrasting the motion signal, and demonstrated it applied to their SIMON robot [32].

Before we move on to define our principles of robot animation, we must first define robot animation. Most
animation principles and guidelines report on designing particular motions. In the context of social robotics, our
understanding is that robot animation is not just about motion. It is about making the robot seem alive, and to
convey thought and motivation while also remaining autonomous and responsive. And because robots are physical
characters, users will want to interact with them and therefore robot animation also becomes a robot’s ability.

We therefore complement Van Breemen’s definition by stating that robot animation consists of all the processes
that give a robot the ability of expressing identity, emotion and intention during autonomous interaction with human
users.

It is important to emphasize the word autonomous, as we don’t consider robot animation to be solely the design
of expressive motion for robots that can be faithfully played back. Instead it is about creating techniques, systems
and interfaces that allow animation artists to program kow the motion will be generated, shaped and composed
throughout an interaction, based on the behaviours that are computed by the Al

A general list of Principles of Robot Animation should also address principles related to human-robot interaction.
In our list however, we refrain from deepening such topic that is already subject of intensive study [165, 166, 167,
168]. Instead, we have looked into principles and practices of animators throughout several decades, and analysed
how the scientific community can and has been trying to merge them into robot animation.

We have noted that not all principles of traditional animation can apply to robots, and that in some cases, robots
actually reveal other issues that had not initially existed in traditional animation. Most of these differences are found
due to the fact that robots a) interact with people b) in the real, physical world.

The following sections reflect our understanding of how the Principles of Robot Animation can be aligned.
Although they are stated towards robots, the figures presented show an animated human skeleton, as an easier
depiction and explanation of use. Each principle is also demonstrated on the EMYS and the NAO robots in an
online video', which can be watched as a complement to provide further clarification. The video first demonstrates
each principle using the same humanoid character presented in this section, and then follows with a demonstration

of each principle first using the NAO robot, and then using the EMYS robot.

4.1.1 Squash and Stretch

For robots to use this principle, it sounds like the design of the robot must include physical squashing and stretching
components. However, besides relying on the design [96, 169], we can also create a squash and stretch effect by

using poses and body movement.

Thttps://vimeo.com/49122495 (accessed January 12, 2019)

42

https://vimeo.com/49122495

In Figure 4.1 we can see how flexing arms and legs while crouching gives a totally different impression on the
character. Following the rule of constant volume, if the character is becoming shorter in height, it should become

larger in length, and a humanoid robot can perform that by correctly bending its arms and legs. Figure 4.2 presents a

snapshot from the video! illustrating how this principle looks like on the NAO robot.

No Squash & Stretch

Figure 4.1: An animation sequence denoting the principle of Squash & Stretch. The red marks represent the
trajectory of the most relevant joints.

SNo'Squast
‘ & ~——7
Stiretich BStreich

Figure 4.2: The principle of Squash & Stretch shown on the NAO robot.

4.1.2 Anticipation

Anticipating movements and actions helps viewers and users to understand what a character is going to do. That
anticipation helps the user to interpret the character or robot in a more natural and pleasing way [31].

It is common for anticipation to be expressed by a shorter movement that reflects the opposite of the action that
the character is going to perform. A character that is going to kick a ball, will first pull back the kicking leg; in the
same sense, a character that is going to punch another one will first pull back its body and arm. A service robot that
shares a domestic or work environment with people can incorporate anticipation to mark, for example, that it is

going to start to move, and in which direction, e.g., before picking up an object, or pushing a button.

43

No Anticipation

Anticipation

Figure 4.3: An animation sequence denoting the principle of Anticipation. The red marks represent the trajectory of
the most relevant joints.

In Figure 4.3 we can see how a humanoid character that is going to crouch may first slightly stretch upwards.

The concept can be better explained by looking at a simple animation curve example. Figure 4.4 shows two
animation curves for a 90 degrees rotation of an object. On the left we see a simple animation curve, and at the start
and end keyframes we see the tangent of the curve at that point.

On the right we have the same keyframes, but the tangent of the initial keyframe has been changed. Just by
adjusting this tangent we have made the object start by slightly rotating 10 degrees backwards before performing

the mentioned 90 degrees rotation, thus creating an anticipation effect.

4.1.3 Intention

This principle was formerly known as Staging in the traditional principles of animation. In robots, staging results
in several things. First, it notes that sound and lights can carefully be used to direct the users’ attention to what it
is trying to communicate. Second, if a robot is interested in, for example, picking up an object, it can show that
immediately by facing such object [31]. In either cases, the key here is showing the intention of the robot.

We can see in Figure 4.5 a simple idea of a humanoid character that is crouching over a teapot to eventually pick

it up. The character immediately looks at the teapot, so users know it is interested in it, and eventually guess that it

is going to pick it up, much before the action happens.

No Anticipation Anticipation

Figure 4.4: Animation curves demonstrating anticipation. The left curve does not have anticipation; The right curve
does.

44

That connects Intention with Anticipation; the difference is that while Anticipation should give clues about
what the robot is going to do immediately, Intention should tell users about the purpose of all that he is doing, as a
pre-action, before the actual action starts. In a crouch-and-pick-up situation, for example, the robot will perform
three actions - crouch, pick-up and stand. We should see Anticipation for each of these actions. The Intention,
however, should reflect the overall of what the character is thinking - it will start looking at the object even before
crouching, and will start looking at the destination to where it will take the object even before starting to turn

towards that direction.

No Intention

Figure 4.5: An animation sequence denoting the principle of Intention. The red marks represent the trajectory of the
most relevant joints.

4.1.4 Animated, Procedural and Ad-hoc Action

This principle was adapted from the Straight-Ahead and Pose-to-Pose action and has strong technical implications
on the animation system development. It originally talks about the method used by the animator while developing
the animation. Straight-ahead animation is used when the animator knows what he wants to do but has not yet
foreseen the full sequence, so he starts on the first frame and goes on sequentially animating until the last one. In
pose-to-pose, the animator has pre-planned the animation and timing, so he knows exactly how the character should
start and end, and through which poses it should go through.

In robots, this marks in the difference between playing a previously animated sequence, a procedural sequence,
or an ad-hoc sequence. As a principle of robot animation, it results in a balance between expressivity, naturalness
and responsiveness.

A previously animated sequence is self-explanatory. It was carefully crafted by an animator using animation
software, and saved to a file in order to be played-back later on. That makes it the most common type of motion
to be considered today in robot animation. However it suffers from a lack of interactivity, as the trajectories are
played-back faithfully regardless of the state of the interaction. The motion is procedural when it is generated
and composed from a set of pre-configured motion generators (such as sine-waves). On the other hand, it is
ad-hoc if it is fully generated in real-time, using a more sophisticated motion-planner to generate the trajectory (e.g.
obstacle-avoidance; pick-and-place task). We can say that playing an animation sequence that has previously been
designed by an animator is a pose-to-pose kind of animation, while, for example, gaze-tracking a person’s face by

use of vision, or picking up an arbitrary object would be straight-ahead action.

45

A pose-to-pose motion can also contain anchor points at specific points of its trajectory (e.g. marking the beat
of a gesture), so that the motion may be warped in the time-domain to allow synchronization between multiple
motions. Those anchor-points would stand as if they were poses, or key-frames in animation terms. The concept of
pose-to-pose can also become ambiguous in some case, such as in multi-modal synchronization, where, e.g. an
ad-hoc gaze and an animated gesture should meet together at some point in time using anchor-points that define the
meeting point for each of them. In that case, the straight-ahead action, planned ad-hoc, can result in an animated
sequence generated in real-time, and containing anchors placed by the planner. From there it can be used as if it was
a pose-to-pose motion to allow both motions to meet.

It currently sounds certain that the best and most expressive animations we achieve with a robot are still going
to be pre-animated. However the message here is that these different types of animation methods imply their own

differences in the robotic animation system, and that such system should be developed to support them.

Pre-animated Action

Figure 4.6: An animation sequence denoting the principles of Pre-animated and Ad-hoc Action. The red marks
represent the trajectory of the most relevant joints.

In Figure 4.6 we can see on top a character performing a pre-animated and carefully designed animation, while
in the bottom it is instantaneously reacting to gravity which made the teapot fall, and as such is performing an
ad-hoc, straight-ahead animation.

While performing ad-hoc action, like reacting immediately to something, it might not be so important, in some
cases, to guarantee principles of animation - if someone drops a cup, it would be preferable to have to robot grab
it before it hits the ground, instead of planning on how to do it in a pretty way and then fail to grab it. In another
case, if a robot needs to abruptly avoid physical harm to a human, it is always preferable that the robot succeeds in
whatever manner it can. An ad-hoc motion planner therefore is likely to not contain many rules about animation

principles, but act more towards functional goals (see the "Functional vs. Expressive Motion" section in [31]).

4.1.5 Slow In and Slow Out

For robot animation, Slow In and Out motion may me implemented within software in two different modalities:
interpolation or motion filtering.

The former can be applied when the motion is either pre-animated, or fully planned before execution, so that

46

the system has the full description of the trajectory points. By tweaking the tangent type of the interpolation of
the animation curve, it is possible to create accelerating and slowing down effects. By using a slow in and slow
out tangent, the interpolation rate will slow down when approaching or leaving a key-frame. This means that in
order to keep timing unchanged, the rate of interpolation will have to accelerate towards the midpoint between
two key-frames. Van Breemen called this Merging Logic and showed how it could be applied to the iCat [9]. In
alternative, when the motion is generated ad-hoc, a feed-forward motion filter can be used to saturate the velocity,

the acceleration and/or the jerk of the motion.

A careful inspection of the red trajectories in Figure 4.7 will show us the difference between the top animation
and the bottom animation. Each red dot represents an individual frame of the interpolated animation, using a fixed
time-step. We can see that in the bottom animation the spacing between the frames changes. It gathers more frames
near the key-poses, and less between them. This causes the animation to have more frames on those poses, thus
making it slow down while changing direction. Between two key poses the animation accelerates because the

interpolation generated less frames there.

This is more noticeable if we look at the animation curves. Figure 4.8 shows a very simple rotation without
Slow-In / Out (left) and with (right). In the left image we used linear tangents for the interpolation method, while in

the right we used smooth spline tangents.

We can see that with a linear interpolation, the curve looks straight, meaning that the velocity is constant during
the whole movement. By using smooth tangents the movement both starts, stops and changes direction with some

acceleration, which makes it look smoother.

No Slow In/Out

* Slow In/Out

Figure 4.7: An animation sequence denoting the principle of Slow In/Out. The red marks represent the trajectory
of the most relevant joints. Notice how more frames are placed at the points of the trajectory where the motion
changes in direction, in particular within the triangular-shaped portion. More spacing between points, using a fixed
time-step, yields a faster motion.

47

100 100
€ [(—/}ksssnnnnas % [gl b nnnnns
80 80
70 70
&0 &0
50 50
40 40
30 30
20 20
10 10
0 0
-10 \\\ﬁ:/ -10 M—'
No Slow-In / Slow-Out Slow-In / Slow-Out

Figure 4.8: Animation curves demonstrating Slow In and Slow-Out. The left curve does not have Slow In / Out;

The right curve does.

4.1.6 Arcs

Taking as example a character looking to the left and the right. It shouldn’t just perform a horizontal movement, but
also some vertical movement, so that its head will be pointing slightly upwards or downwards while facing straight
ahead. We can see that illustrated in Figure 4.9.

This principle is easy to use in pre-animated motion. However, in order to include it in an animation system, we
would need to be able to know in which direction the arcs should be computed, and how wide the angle should be.
If we have that information, then the interpolation process can be tweaked to slightly bend the trajectory towards
that direction, whenever it is too straight.

What actually happens with robots is that depending on the embodiment, it might actually perform the arcs
almost automatically. Taking as example a humanoid robot, when we create gestures for the arms, they will most
likely contain arcs, due to the fact that the robot’s arms are rigid, and as such, in order for the them to move around,
the intrinsic mechanics will lead the hands to perform arched trajectories. In traditional animation this principle was
extremely relevant as the mechanics of the characters were not rigidly enforced as they are in robots. Arcs still pose
as an important principle to be considered in robot animation, both for pre-animated motions and also as a rule in
expressive motion planners.

Figure 4.10 shows a character gazing sideways. The yellow cone represents the gazing direction at each frame.
The red curve illustrates the motion trajectory on the panning DoF (horizontally) and the Pitch DoF (vertically).
On the top motion, no movement is performed on the Pitch joint (straight line). On the bottom motion, instead of
performing only Yaw movement while looking around, the head also changes its Pitch between each keyframe of

the Yaw movement.

4.1.7 Exaggeration

Exaggeration can be used to emphasize movements, expressions or actions, making them more noticeable and
convincing. As such, it can also make robots seem more like actual characters and not just machines.

Although there are several levels of exaggeration, for robots it is interesting to look at exaggeration of actual

48

Figure 4.9: An animation sequence denoting the principle of Arcs. The red marks represent the trajectory of the
most relevant joints.

Figure 4.10: Animation curves demonstrating Arcs. The blue curve is the Panning DoF, rotating from the rest pose,
to its left (60 degrees) and then to its right (-60 degrees), and then back to rest. During this motion, the Pitch joint
(red curve) slightly waves between those key-frames.

49

movements. It is actually a feature that can be implemented in animation systems by contrasting the motion signal

[32].

Figure 4.11 shows not only an amplification of the most relevant features of an animation, but also an added
feature - an ’anticipation’ backward step. This is meant to show that exaggeration can consist of more then just
contrasting the signal, and that by exaggerating the anticipation we can also make the actual action seem more
powerful. Because this kind of practice may endanger the robot’s surroundings and users if not correctly planned, it
is recommended only within pre-animated motion, or for performance and entertainment robots in which the robot’s

surroundings and mechanical reach are guaranteed to be safe.

Figure 4.12 presents a snapshot from the video! illustrating how this principle looks like on the NAO robot,
while Figure 4.13 show the same for the EMY'S robot.

No Exaggeration

Figure 4.11: An animation sequence denoting the principle of Exaggeration. The red marks represent the trajectory
of the most relevant joints.

LJ
\

LS
"’rg 3

}

we | W
AR | R%

NolExaageration Exagoeration

Figure 4.12: The principle of Exaggeration exemplified on the NAO robot.

50

Exaqgerafio

Figure 4.13: The principle of Exaggeration exemplified on the EMYS robot.

4.1.8 Secondary Action and Idle Behavior

During a conversation, people often scratch some part of their bodies, look away or adjust their hair. In Figure 4.14
we can see a character that is crouching to approach the teapot, and in the meanwhile scratches its gluteus. Using
secondary action in robots will help to reinforce their personality, and the illusion of their life.

A character should not stand stiff and still, but should contain some kind of Idle motion, also known as keep-alive.
Idle motion in robots can be implemented in a very simplistic manner. Making them blink their eyes once and a
while, or adding a soft, sinusoidal motion to the body to simulate breathing (lat. anima) contribute strongly to the
illusion of life.

In the case of facial idle behaviour such as eye-blinking, during a dramatic facial expression these will often go
unnoticed or may even disrupt the intended emotion. It is better to perform them at the beginning or end of such

expressions, rather than during. Similarly, blinking also works better if performed before and between gaze-shifts.

8T8 41018l b

Figure 4.14: An animation sequence denoting the principle of Secondary Action. The red marks represent the
trajectory of the most relevant joints.

4.1.9 Asymmetry

This principle was derived from the traditional principle of Solid Drawing. Although the traditional principle seemed
not to relate with robots, it actually states some rules to follow on the posing of characters.

It states that a character should neither stand stiff and still, nor does it stand symmetrically. We generally put
more weight in one leg than on the other, and shift the weight from one leg to the other. It also suggests the need for

the idle behaviour, and how it should be designed.

51

The concept of asymmetry stands both for movement, for poses and even for facial expression. The only case in
which we want symmetry is when we actually want to convey the feeling of stiffness.
Figure 4.15 shows a character portraying another Principle - Idle Behaviour, while also standing asymmetrically.

This Idle Behaviour is performed by the simulation of breathing and by slightly waving its arms like if they were

mere pendulums.

Assymetry / Idle Behavior

L ACAL AL AR Y

Figure 4.15: An animation sequence denoting the principles of Asymmetry and Idle Behaviour. The red marks
represent the trajectory of the most relevant joints.

4.1.10 Expectation

This principle was adapted from the original Appeal. If we want a viewer or user to love a character, then it should
be beautiful and gentle. If we are creating an authoritative robot, it should have more dense and stiff movements.
Even if one wants to make viewers and users feel pity for a character (such as an anti-hero), then the character’s
motion and behaviour should generate that feeling, through clumsy and embarrassing behaviours.

Figure 4.16 shows two characters performing the same kind of behaviour, but one of them is performing as a
formal character like a butler, while the other is performing as a clumsy character like an anti-hero. In this case
the visual appearance of the character was discarded. However, if we had a robotic butler, we would expect him to
behave and move formally, and not clumsy.

The expectation of the robot drives a lot of the way users interpret its expression. It relates to making the
character understandable, because if users expect the robot to do something that it doesn’t (or does something that
they are not expecting) they fill fail to understand what they are seeing.

Wistort refers to Appeal as *Delivering on Expectations’ [164], and his arguments have inspired us to agree. He
considers that the design and behaviour of a robot should meet, so if it is a robotic dog, then it should bark and wag
its tail. But if it is not able to do that, then maybe it should not be a dog. The Pleo robot? for example, was designed
to be a toy robot for children. So the design of it as a dinosaur works very good, as it does not cause any specific
expectation in people - as people do not know any living dinosaurs, and as such, they don’t know if Pleo should be

able to bark or fetch, so they don’t expectation him to be able to do any of that.

4.1.11 Timing

Timing can help the users to perceive the physical world to which the robot belongs. If the movement is too slow,
the robot will seem like it is walking on the moon.
However, timing can also be used as an expression of engagement. Some studies have revealed a correlation

between acceleration and perceived arousal. A fast motion often suggests that a character is active and engaged on

2www.pleoworld. com (accessed January 12, 2019)

52

www.pleoworld.com

Clumsy Expectation

Formal Expectation

Figure 4.16: An animation sequence denoting the principle of Expectation. The red marks represent the trajectory
of the most relevant joints. Notice how the clumsy version balances the teapot around instead of holding it straight,
and waves around its left ar instead of holding it closer to its body, delivering a feeling of discourtesy.

what it’s doing [95, 31].

Being able to scale the timing is useful to be able to express different things using the same animation, just by
making it play slower or faster. In Figure 4.17 we get a sense that the top character is not engaged as much as the
lower character, because we see it taking longer to perform the action. It may even feel like the character is bored
with the task. In the fast timing case we are showing less frames of the same animation, to give the impression of it
being performed faster. In reality, that would be the result, as a faster paced animation would require less frames to

be accomplished using a fixed time-step.

Figure 4.17: An animation sequence denoting the principle of Timing. The red marks represent the trajectory of the
most relevant joints.

As a principle of robot animation, timing is something that should be carefully addressed when synthesizing
motion e.g. using a motion-planner. Such synthesizer will typically solve for a trajectory that meets certain
world-space constraints, while also complying with certain time-domain constraints such as the kinematic limits that
the robot is allowed to perform. In many cases, a very conservative policy is chosen, i.e., the planner is typically
instructed to move the robot very slowly in order to keep as far away as possible from its kinematic limits. However,
such a rule may be adding some level of unwanted expressiveness to the motion. We therefore argue that when
using such planners it is important to consider, within the safety boundaries of the robot’s kinematic limits, ways of

generating trajectories that can exploit the time-domain in a more expressive way.

53

4.1.12 Follow-Through and Overlapping Action

This principle works like an opposite of anticipation. After an action, there is some kind of reaction - the character
should not stop abruptly.

We should start by distinguishing these two concepts here. Follow-through animation is generally associated
with inertia caused by the character’s movement. An example of follow-through is when a character punches another
one, and the punching arm doesn’t stop immediately, but instead, even after the hit, both body and arm continue to
move a bit due to inertia (unless it is punching an ’iron giant”). Overlapping is an indirect reaction caused by the
character’s action. An example of overlapping is for example the movement of hair and clothes which follow and
overlap the movement of the body.

Using follow-through with robots requires some precaution because we do not want the inertial follow-through
to hurt a human or damage any other surroundings. Follow-through might also cause a robot to loose balance, so it
seems somewhat undesirable. Many robot systems actually will try to defend themselves against the follow-through
caused by its own movements, so why would we want it?

In first instance, we consider that follow-through should better not be used in most robots, especially for the first
reason we mentioned (human and environment safety). However, when it can be included at a very controlled level,
namely on pre-animated motion, it might be useful to help mark the end of an action, and as such, to help distinguish
between successive actions. Unlike anticipation, however follow-through is much more likely to be perceived
by humans as dangerous, because it can give the impression that the robot slightly lost control over its body and
strength. We would therefore imperatively refrain from using it on any application for which the perception of safety
is highest, such as in health-care or assistive robotics.

Overlapping animation depends mostly on the robot’s embodiment and aesthetics. It might serve as a tip for
robot design, by including fur, hair or cloth on some parts of the robot, that can help to emphasize the movement
[169]. As such, we find no need to include overlapping animation into the animation process of robots per se,
because whatever overlapping parts that the robot might have, should be *animated’ by natural physics. Therefore
if one wishes to use it, it should be considered as an animation effect that is drawn by the design of the robot’s

embodiment, and thus should be developed initially at the robot design stage.

4.2 Dimensions of Kinematronics

We introduce here the concept of Kinematronics, which refers to all the high-level mechanical and electronic systems
that allow a robot to portray animate expression either kinematically (through physical movement) or electronically
(through screens, lights and sounds). The term is derived from kinematics, which would refer only to the mechanical,
physical components, and is composed with the concept of "electronics" to include the non-mechanical forms of
expression.

Robots may take many forms and shapes, and provide various means of both interacting with the world, and of
conveying expressivity. We start by defining an expressive Degree of Freedom (DoF) (degree of freedom), further
referred to merely as a DoF, to be a one dimensional expressive channel that can be individually controlled through
a given range or set of values. Each expressive DoF in a robot can be controlled individually during interaction in

order to convey a significant and intentional expression. Based on the set and types of DoFs a robot has, and their

54

individual and aggregate role on providing expressivity, we have defined four different dimensions of kinematronics:

Stationary Expression refers to motion performed by DoFs that are purely mechanical and that do not yield any
intentional movement in space. Examples of such expressions are facial and postural expressions. The term
stationary is chosen because these are mostly found in stationary robots such as desk-top robots, which do
not move around by themselves. We do include full-body postures into this type of expression, as long as they
are not meant to move the robot in space. An example of that would be a standing humanoid robot, which
enacts a full-body emotive posture. While its legs could be used for walking, i.e., for spatial function and
expression, when they are used in non-locomotive expressions we do consider them to be acting as part of the

stationary expression dimension.

Spatial Expression refers to motion that moves the robot around in space. These are typically accomplished by
either wheels or legs, but can also be performed by rotors, as in a quadcopter drone. Note that besides walking,
a legged robot, for example, may also have the ability to perform controlled movements in height, allowing it
to e.g. climb up stairs, jump, or crouch. Comparing to the the stationary expression dimension, the accounted
number of DoFs may seem lees intuitive than for the other dimensions, as it does not related to the number
of legs or wheels that the robot has, nor to their articular structure. A legged or wheeled robot can move in
1D, 2D or 3D, while also being able to perform motion that rotates about a given set of axes. For example,
a 1D-capable robot could be able to move either back and forth, or side to side. A 2D-capable robot could
move back-and-forth, and additionally either rotate left and right (yaw), or strafe to the sides, or travel up and
down. A 3D-capable robot can typically move in 2D plus rotate about the vertical axis (Yaw). This dimension
therefore accounts for the total number of axes about which the robot can perform spatial movement, be them
translational or rotational axes. It can thus account for zero to 6 DoFs, given the robot’s ability to travel along
its local X, Y or Z axes, or to perform yaw, pitch or roll movements. Please refer to figure 4.18 for any further

clarifications.

Display Expression refers to expressions portrayed through some form of electronic light display. This can
include simple monochrome LEDs, multi-color/RGB LEDs, a monochrome (LCD) screen or an RGB screen.
Ultimately it can also include some kind of light projection system. If no layer of expressive control is defined
for the display, we consider each individually controlled LED to be one DoF (even if it is multi-colored),
and each individual screen/projector to also be one DoF (regardless of its pixel resolution). However, if the
LEDs are disposed in a particular expressive way, such that they all relate to the same expressive channel,
that should always be controlled as a whole (e.g. each of NAO’s eyes is composed of 8 LEDs), then we
consider them all to be a single, aggregated DoF. Similarly, of a robot necessarily includes a particular type of
expressive display application, such as a face, then we consider the display element to have as many DoFs
as that application. Note that in a case where e.g. the application allows to individually control the opening
of each eye, that would amount to 2 DoFs. If one can control the opening and frowning of each eye, then it
has 4 DoFs. If however the application has only a set of pre-defined expression, without any further control,
then we consider it to have only one DoF, which corresponds to the discrete list of expressions. This type
of specification for display expressions allows us to abstract from the technical aspect of how the displays

and lights are physically implemented, and instead specify the type and amount of expressive signals can be

55

e . =
P V

%

1 DoF (1D Translate) 2 DoF (1D Translate + Yaw)

N

‘r.’
V2

c X

—

|
7i~
v

2 DoF (2D Translate) 6 DOF (3D Translate + Yaw+Pitch+Roll)

Figure 4.18: The Spatial Expression of Kinematronics. top-left: movement in a single direction represents 1 DoF.
top-right: movement in one translational direction plus one rotational direction (in this case, Yaw), amounts to
2 DoFs. bottom-left: movement in two translational directions also amount to 2 DoFs. bottom-right: the most
complex 6-DoF example, in which translational movement can be performed in 3D, and rotational movement can
also be performed along the three rotation axes. Using intrinsic rotations is recommended, i.e., the coordinate system
for the rotations is attached to the moving body and therefore changes after each elemental rotation. Elemental
intrinsic rotations are performed in the order Yaw-Pitch-Roll.

individually portrayed through it.

Audible Expression refers to any audible form of intentional expressivity that a robot may have, from simple
beeps, to 4 or 8-bit audio effects (sampled or generated), or a more sophisticated speech system. Speech
may either be pre-recorded (from humans), pre-synthesized, or synthesized during interaction using a TTS.
Outputting speech will typically require a more modern 16- or even 24-bit audio output system. Similarly to
the case of the display expression level, we consider that each individual audio player/controller accounts to
one DoF. That means that the speech system is one DoF, and any other audio-output adds as many DoFs as

the number of audio signals it can control and play simultaneously.

In Figure 4.19 we can see examples of how some several robots would be placed within the kinematronics
dimensions. In particular, taking the humanoid NAO H25° robot as example, we see it contains at least 25 stationary
DoFs that can be used for expression. Although its legs may be used for locomotion, there are many cases in which
they are used purely for expressive postures. Regarding spacial expression, NAO is capable of 3D motion, given
that it can walk forward and backward, strafe sideways, and also perform yaw rotation. As to display expression,
and while in total, the robot has many individual LEDs, we consider the amount of display-expression DoFs to be 5:
one for each eye and ear and one on the head. Finally, for audible expression, NAO is capable of both talking and
playing audio files. While it physically contains two speakers (one on each ear), what matters expressively is that its
audio-player typically allows to play only one file/sound at a time. Be it music, expressive or warning sounds, they

will all be played through the same controller. Therefore, it contains 2 audible-expression DoFs: the TTS, and the

*nttp://doc.aldebaran.com/2-5/family/nao_h25/index_h25.html (accessed January 12, 2019)

56

http://doc.aldebaran.com/2-5/family/nao_h25/index_h25.html

Stationary Spatial Display Audible
Expression Expression Expression Expression
- 6D —1 o+ —+-4+
13
- 5D
QL
o —4-3
Q L 4D <+
(%)
4 T 2
~
< 20 T°
W
41 -+ 1D —+1 —3-1

Legend: NAO H25
Adelino

Pepper

Cozmo

EMYS(current)

Kinematronics Dimension

Figure 4.19: The four kinematronics dimensions, along with an illustration of how several existing robots would be
represented.

audio-player. The figure also compares the NAO T14*, Pepper®, Adelino®, Cozmo’, and the latest version of the
EMYS? robot.

It is extremely important to note that these dimensions do not portray how expressive a robot is or can be. Due
to design factors, a robot with e.g. few static expression DoFs such as the EMYS or the Adelino, may be considered
more expressive than a high-DoF robot such as the NAO. The purpose of these dimensions are solely to enumerate
and provide a specification for the various expressive channels that can be found in robots, and does not provide any

hints for comparing the overall expressiveness between them.

4.3 The Nutty Workflow for Robot Animation

In order to implement social robots that are based on the concept and processes of robot animation, one must
properly introduce these into the design and development workflow. In this section we introduce general concepts
on how a system architecture should be laid out and used, which is presented as the workflow for the design and
development process. The workflow presented here are deeply inspired on the work developed previously with
the Nutty Tracks animation engine (Section 6.1), which was used as a sandbox to explore and develop new robot
animation techniques for interactive applications [121, 42, 157]. As such, we refer to these as the Nutty Workflow
and the Nutty Pipeline.

The Nutty Workflow presented here aims specifically at allowing the type of animation capabilities mentioned
throughout this thesis. As such, it should not stand as a general workflows for the whole field of HRI and social
robotics. Instead, it presents the elements that should (or are suggested to) be present to achieve highly animate
social robots, that exhibit the illusion of life, and whose design and development was carried out with animation

theories and practices in mind. Further modifications should be carried out in order to accommodate any other

“http://doc.aldebaran.com/2-1/family/nao_t14/index_t14.html (accessed January 12, 2019)
Shttp://doc.aldebaran.com/2-5/home_pepper.html (accessed January 12, 2019)
Shttps://vimeo.com/232300140 (accessed January 12, 2019)

7https ://www.anki.com/en-us/cozmo (accessed January 12, 2019)

Snttps://emys.co/ (accessed January 12, 2019)

57

http://doc.aldebaran.com/2-1/family/nao_t14/index_t14.html
http://doc.aldebaran.com/2-5/home_pepper.html
https://vimeo.com/232300140
https://www.anki.com/en-us/cozmo
https://emys.co/

requirements.

4.3.1 Concept Design

First, if developing a new robot, its concept design must carefully consider all the expressive capabilities and the
kinematronic dimensions needed. We will not deeply explore this concept there, as it is also subject of study in
other works. In particular we refer to the work by Hoffman & Ju which explores the initial stage of designing a
robot with its expressive movement in mind [96]. This stage should include both hand-drawn concepts, along with
3D animated concepts, and even pre-visualization prototypes that allow the designers and developers to virtually
simulate how the robot would behave during specific use cases of interaction with humans. Such pre-vizualization
can be developed using game-development engines such as the Unity® or the Unreal Engine!?. This initial concept
stage will help to inform developers both about the aesthetical design of the robot, on its kinematic structure, such
as number of joints, and range of motion, and also about the use of display expression elements. Sound design
[170] can also be explored at this stage, and can be used both on rendered 3D animations of the robots, and on the
interactive pre-vizualization. If the robot will be performing speech, it is also a good idea to pre-visualize how
it will look with the robot at this stage, as that may seriously impact the design of any facial features that should

become animated while the robot is speaking.

4.3.2 The Nutty Workflow

Figure 4.20 illustrates the Nutty Workflow. We split the workflow in two main areas: the creative development
and the technical development. The idea is that both are intrinsically part of the model and should holistically be

considered as a whole. In the creative development area, we find most of the behaviour-authoring related to the
Creative Development Technical Development
| Perception |
Engine(s) | 1

- .
! /7 sensors O\

Control

Behaviour Repertoire

Dialogues

..... Software ~_
. (Al, Wizard-of-Oz, L
Multimodal ' Remote Control, etc..) e \

Behaviors

Robot \ |
Animation Software f‘
Engine \\ robot
Behaviour Animation Sound Design ~ /
Authoring Software & & Speech

Tools Tools Tools Animation '
Programs (Pre-viz /@
Animation Software

Programming — = \Audlo Vldeo /

Tools

Figure 4.20: The Nutty robot animation workflow.

“https://unity.com (accessed January 12, 2019)
nttps://unrealengine. com (accessed January 12, 2019)

58

https://unity.com
https://unrealengine.com

social robot, including the development of pre-designed animations and postures, sound design, dialogues and
composite multi-modal behaviours, which allow to sequence and synchronously play back a set of e.g. animations
and postures, along with dialogue and sound effects. This area is expected to include non-technical developers such
as animators or psychologists. As such it is important to carefully consider the type of tools used, to make sure they
can produce properly specified assets that can be used further in the software. We will addressed and elaborate on
such tools later in section 5.3.

The technical development area consists of the software architecture that is typically expected for a social robot.
That includes, on the hardware part, both the Robot and Sensors, along with the lower-level Robot Software that
controls and communicates with both. Note that while the robot will likely contain sensors already, other external
sensors may be used, such as external cameras (RGB or RGB-D) for object and user tracking and recognition, or
even for localization of the robot. As such it is useful to include a dedicated Perception Engine that can handle
the input signals and translate them to symbolic, meaningful inputs for the Control Software and the Animation
Engine. The Control Software is illustrated as a single component, but may be split into various sub-components
depending on the application. This should handle the actual application-domain knowledge and control, which
allows the robot to perform a given task or application. Alternatively, it can consist of remote control tools, such as
a Wizard-of-Oz, or a tele-operation panel. The output of Control Software should be discrete and well-specified
commands, given to either the robot software directly (e.g. shutdown, reset, etc..), or to the Animation Engine.

Because the focus of this workflow is robot animation, we do place the Animation Engine as a separate
component. This engine should be able to handle all the commands that control the various kinematronic abilities of
the robot. Depending on the aim of the application, it may have various levels of complexity. There are explained
further in Section 5.2.

Note that the animation engine has the ability of running Animation Programs. These programs differ from a
static animation file, in that they contain a sequence of rules that allow the generation, transitioning and blending
of various expressive modalities, along with the computation of ad-hoc motion such as the ones that are produced
through inverse kinematics or path planning (Section 5.2). While a more traditional architecture would delegate
such techniques to the actual robot software, we claim that including all motion control in the animation engine
allows to seamlessly use Pre-Viz Software in place of the real robot during much of the development. In particular,
such Pre-Viz aims at allowing the creative developers to work on the robot’s behaviour and expressivity, in an
interactive way, in order to ensure that the final behaviour of the robot during an interaction will match the intended,

authored behaviour, as close as possible.

59

60

Chapter 5

Robot Animation in Practice

5.1 Building Autonomous Socially Expressive Robots using SERA

Throughout our history of creating various human-robot interaction (HRI) applications, for different purposes and
featuring different robots, we have designed and developed multiple interaction scenarios and software tools to aid
us in augmenting both the quality of the interaction and richness of expressivity of the different robots used. Figure

5.1 provides a high-level illustration of how most of these scenarios have been built.

Virtual Environment Physical Environment

Robot

IVA
(Intelligent Virtual Agent)
Sensors

Tangible Device
Multimedia Application (e.g touch table,
smartphone)

Figure 5.1: The composition of our typical HRI scenarios.

In order to streamline and promote the design and development of reusable components, we have created SERA,
which is an architecture and set of tools for creating autonomous socially expressive robots (ASERs) [42]. The
SERA ecosystem was created following on the SAIBA model which is very popular within the virtual agents
community [37]. Figure 5.2 shows the original SAIBA model, while Figure 5.3 illustrates the general components
of the SERA model. Colouring of the components establishes a relationship between both figures. In overall, our
architecture aims at providing a reusable structure and collection of modules, that can work for different scenario
applications and robots.

The Intention Planning/Decision Making (DM) layer contains components that perform the decision making

61

Behaviour Planning Realization
(e.g. selection from a library, (e.g. rendering of animation,
timing, synchronization) text-to-speech)

Intention Planning
(e.g. decision-making, WoZ)

4
A 4

Figure 5.2: The SAIBA model for virtual agents [37].

> Decision Making (Al) g
N g g
Y S0
=
Behavior Manager (BM) =
—{ Multimedia App | | TTS Arélmatlon
ngine

Figure 5.3: The SERA model. In compliance with SAIBA, the Al is the Intention Planning level; BM is the Behavior
Planning level; All the others (including User Perception) are the Realization level.

and is mostly scenario-specific, as it models the high-level knowledge intrinsic to the interaction scenario or
application.

The Behaviour Planning/Manager (BM) layer builds high-level behaviours based on intention-directed in-
structions generated at the higher level. These behaviours can be slightly generalized, as different characters and
scenarios may share some common behaviour mechanisms.

We generally decompose the realization level into a Text-to-Speech (TTS) engine, realization of animation, and
some multimedia application through which the user can interact with the system and receive feedback from it.

User Perception has not been traditionally included in the SAIBA model. However, on previous work adapting
that model to HRI, we have include a transversal Perception layer that runs across all other levels [171], providing
both high and low-level representations of the interaction environment. Our experience has shown it to be useful
both to provide high-level perception of the user such as facial recognition, emotional state recognition or gestural
actions, to the Al, and also lower-level perceptions such as simple face detection or sound direction estimation, to
be used both for the generation of some types of behaviours at the DM and BM components (e.g. rapport), and for
adaptation of behaviour at both the BM and Animation components (e.g., tracking a user’s face). Actions selected
by the user in the multimedia application can also be interpreted by the Al as perception of user actions (e.g. clicked
a button, selected an option).

In particular, when dealing with robots, a component such as the Animation Engine tends to be developed
specifically for the robots’ motor control systems, as these differ greatly from robot to robot. This specificity of the
realization layer for robots thus poses as a problem in abstracting high-level behaviours in a way that scenario- and
behaviour- components can be used across various robotic platforms and interactive applications. We addressed this
problem by creating the Nutty Tracks animation engine, further described in Section 6.1.

We will further refer to a SERA Character, or just a Character as a set of components that have been built and
are architecturally laid based on SERA, acting together in order to function as an ASER. Although a Character

could also be virtual, in the scope of this thesis we will not enforce such distinction unless it is required.

62

It is important at this point to discuss how the Autonomous feature of the robot is given especially by the
components used for Decision Making. Throughout our development of full scenarios or Characters, it has been a
trend to follow a two- or three-stage iterative user-centred design. While the final result is an autonomous robot,
throughout its development, we may go through several milestone prototypes that are typically semi-autonomous

and partially tele-operated.

The following sections of this chapter start by presenting our ASER development methodology and then
some of the main tools that have been developed as part of SERA. Thalamus, presented in Section 5.1.2 is a
component integration framework which we have been using to allow all the modules and tools to easily connect
and communicate across multiple computers and operating systems. Skene (Section 5.1.3 is a Behaviour Manager
that connects with most of the other modules in a character. Nutty Tracks, in Section 6.1 is a symbolic animation
system that allows the ASER to mix all the different behaviour modalities generated during an interaction, and can

produce them for different embodiments and robots.

5.1.1 The SERA Development Methodology

Our methodology for developing autonomous socially expressive robots is generally composed of two or three
states. Figure 5.4 illustrates the complete three-stage methodology. Depending on the nature of the scenario and
its application, we can optionally skip some of the stages. Given, for example, an HRI application that is directed
to school children or elders, it is important to consider all the stages, and to include the experts (e.g. teachers,
caregivers) in the process. However for a typical HRI scenario aimed at entertainment, if would generally be
sufficient to start developing at Stage 2. Further simple, small-scale applications such as the student projects develop
during classes of their Masters degree courses. would most likely consider solely Stage 3. In such cases one must

also consider a different designation for some of the steps in Stage 3 (e.g. Refinement becomes actual Development).

Stage 1 - Mock-up Prototype

The first stage is generally considered when the application requires us to work alongside experts. In that case we
start by establishing the foundations of the interactive scenario and activity, as in what the target users will get from

it.

63

Stage 2 - Semi-Autonomous (SA) Prototype Stage 3 - Autonomous Prototype (AP)
“
Stage 1 - Foundations Nonverbal Behaviour
- Behaviour Behaviours Refinement
Repertoire
JE— % Design ‘ P Refine SA
‘ 0] G Prototype | _
Foundational () \ Verbal e c Perception -
Research c Utterances | & 2 | Refinement ol
o O | Perception o & g_
£ I k3] Design © a Autonomous| 2
o)) ® & c Gamer Capabilities | o
Q— Design o Sensory 0 [e) - Al &
i} Activity = Gamel Components | < ..a Application 3
e < ame/ %) ol Refinement a
:§ & | Application) Extra <
Design .
MCrelilte 9 \ Game/ £ (Task & Social / gg:t?;t‘
ock-up Application % Intelligence J
Prototype Design
:I \ 4
Semi-Autonomous Level/Tasks / Autonomo
Mock-up Prototype Prototype Design Prototvpe
_—/
_ _ N
Run Mock-up g Run SA 8 Run AP s
Experiment | g Experiment | & Experiment | &
£ E £
o}) ko
Mock-up Data 2 SA Data o AP Data o
Gollection & | 7 Collection & | 3§ Collection & | 33
Analysis Analysis Analysis
o OK?
Semi-Autonomous Milestone Autonomo enario

Mock-Up Milestone

Figure 5.4: The SERA-based multi-stage ASER development methodology that we have typically followed on
previous HRI scenarios.

In order to understand how humans typically address a given task or application, we can build a mock-up
prototype and use it to run a human-human (H-H) experiment. This mock-up prototype should look as close as
possible to the task or application that we are addressing, but without including any robot at all. For example, if
developing a robotic tutor for class rooms that is able to play a given game with children using a tablet or touch-table,
we may start by setting up such application, or application prototype on a table, and have children interact with it
accompanied by a peer or a teacher. That way we can analyse the H-H interaction that happens while the student is
playing the game, and collect the type of utterances and specifications for a gaze model that is appropriate to the

target application.

Stage 2 - Semi-Autonomous Prototype

The prototype developed in Stage 1 along with the data collected is used to inform Stage 2. We split this stage
between Interaction Design (ID), and Development, where ID can be performed by non-technical professionals
such as psychologists, animators or designers.

In this stage we develop a first set of behaviours for the robot, both verbal and non-verbal, through which it
should be able to interact with the target users in the target application. When the first Stage was not required,
the behaviours are developed either based on literature, on previous analysis or observation, or in some cases (e.g.

entertainment applications), they can be developed intuitively or in an artistic fashion. This is also where we develop

64

most of the required perceptual components, and a nearly final version of the game or application that can also
be controlled by an external Al agent (and not only through direct user input). It is important to note that, when
using a robot to interact with users through an application running on a tablet or any other virtual device, those
virtual applications may have to be modified or developed in order to allow the AI agent to control it, e.g. by
adding commands that allow a button to be pressed or a message to be shown without the user having to interact
directly with the application. In many situations the robot may also take an active role in the activity, and as such, it
should be able to initiate it, terminate it, or perform actions on it just as if it was a real person interacting. This
type of remote control of the application must be carefully considered and designed so that the users understand
that it is the robot who is controlling the application. If the robot has hands, having it point at the application in
synchronization with the actions can help to convey this. In any case there should always be a visual highlight on the
screen whenever the robot is controlling the application or talking about it, so that the user knows where to look at.

This set of behaviours, perceptual capabilities and application are then evaluated using a remotely controlled
semi-autonomous prototype of the robot. Although this is typically referred to solely as a Wizard-of-Oz (WoZ)
setting [172], we stress the semi-autonomous factor of our WoZ practices. In a semi-autonomous WoZ, the Wizard
is used mostly to replace a higher-level Perception and Decision Making components. However the robot can run
most of the task and interaction autonomously, while the Wizard is provided with higher-level controls that guide
the behaviour selection or generation processes, based on what is observed by the Wizard throughout the interaction.
Performing an evaluation at this stage allows us to test and refine the robot’s verbal and non-verbal behaviour, and
its role within the interactive activity, before investing on making the system run autonomously.

At the end of this stage, the HRI system should be almost fully develop, in a way that we could just remove the
WoZ module and replace it by the final Perception and Al modules. In order for that final step to be seamless, it is
important to integrate the WoZ module just as if it was another component if the system. Therefore, if some kind of
messaging mechanism is used to communicate between modules, the WoZ module should already produce and
receive the same messages that the final Perception and Al modules are expected to produce, using the same API, so

that the final stage will require very few to no changes in its behaviour and code.

Stage 3 - Autonomous Prototype

This stage is about turning the previous prototype into an autonomously controlled one. At this point there should be
only some changes left to do regarding the robot’s verbal and non-verbal behaviour, and the interactive application.
In order to guarantee a proper interaction flow with the autonomous version, it is however expectable that the design
and use of some of these components may need to suffer some changes. It is also common to add more content to
the prototype at this stage, such as extra levels in a game, given that all the mechanisms required for the robot to
interact through it are already created and tested.

Developing the final Perception and Al modules is generally application-specific. Even when using the same
Perception sensors such as the Kinect or microphones, different applications may require different higher-level
perceptions of a task or of the user. As to the Al, depending on the goal and scope of the project, is may be created
as a simple rule-based system, or even include some for of machine learning.

An evolved version of the semi-autonomous WoZ, called restricted-perception WoZ, has been presented by

Sequeira et al., in which the Wizard monitored the interaction not through a video or audio feed, but through

65

discrete symbolic messages that were generated by the Character’s actual perception modules [173]. Instead of
being presented with a live audio and video feed, the Wizard is presented with the discrete information that can
actually be collected through the sensors and the Perception module. An example of this is when the robot must
react the the user’s gazing direction. Because its Perception will have to identify whether the user is gazing, e.g.,
towards the robot, towards the task, or elsewhere, the Wizard should be presented only with this fact, given what
its sensors were able to perceive. This way the Wizard was presented with the realistically limited and imperfect
information that can be collected through the Character’s sensors, and was forced to perform decisions based on
those, instead of being allowed to perform based on a more natural observation from real-time audio and video,
through which the Wizard is able to discern the user and the environment in a way that the robot is not.

The main advantage of this type of setting is making it easier to create autonomous behaviours, based on the
data collected from the interactions of the previous Stage. If the Wizard’s selected actions are recorded based on the
discrete information that is produced by the real robot’s Perception, then it is possible to train the Al directly using
that data.

In this stage it is still crucial to have the Interaction Designers working closely with the Developers, in order
to guarantee that the expected interaction is achievable in an autonomous fashion, while finding solutions for

limitations that do not sabotage the interaction.

5.1.2 Thalamus

Thalamus is a high-level integration framework aimed especially at developing interactive characters that interact
both through virtual and physical components. It was developed in C#/.NET to accommodate social robots into such
a framework, while remaining generic and flexible enough to also include virtual components such as multimedia
applications or video games running on a touch table [41]. It follows on the concepts of asynchronous messaging
middle-ware and on well-defined message structures (based on MOM as ROS does) to provide a seamless plug-
and-play-modules functionality (Figure 5.5). However, being a higher level middle-ware (in comparison to ROS) it
works "out of the box", without requiring any installation on the host system, and also includes graphical interfaces
aimed at developing Thalamus modules as agents. It also aims at being easy to use and to share in an academic and
research setting, to be portable, and adequate for collaborative development.

Thalamus breaks the sense-think-act loop by not specifying any particular layer structure. The idea behind it
is that a Thalamus Character is an agent built out of agents. These agents are Thalamus modules that exchange
perceptions and actions between them, so while any module may actually contain a sense-think-act loop, holistically
the Thalamus Character does not. That allows it to simultaneously contain several modules that deal with behavior,
or with perception, or even with decision making, as long as the combination of them all produces the expected
overall behavior. These Characters can be used seamlessly across embodiments (virtual or robotic) and applications,
by just switching or tweaking some of the modules. An example of that is a robot interacting with users through an
application running on a touch-table, and using a Microsoft Kinect to track the user’s face. Contrary to traditional
agents that contain a "body", all the those three components represent the physical interface between the users and
the system. User perception is informed by the Kinect, which is independent of both the robot and the touch-table;
user actions are perceived by the application (e.g user clicks), and behaviors are both executed expressively by the

robot, and task-wise through the application (e.g. the agent can invoke the application to pop-up a screen while the

66

Message A /I
Subscribes

Module 2 (o

MOdUIe 1 Publishes

Subscribes

embodiment

Publishes \

Thalamus

Publishes MOd/t;IILe 3

Subscribes

External / Physical world

Figure 5.5: Example of how several Thalamus modules coexisting in the same virtual space, exchanging messages
through a publish/subscribe mechanism.

robot points at it).

It is important to mention at this point that every component we develop for our system (including the ones on the
following sections) is developed in order to function as a Thalamus module. Therefore, our current implementations
of SERA Characters are in fact Thalamus Characters, while what we call the SERA ecosystem is the whole set of
modules that have been developed and can integrate and coexists within Thalamus, in order to compose specific

Characters.

5.1.3 Skene

Skene is a semi-autonomous behavior planner that translates high-level intentions originated at the decision-making
level into a schedule of atomic behavior actions (e.g. speech, gazing, gesture) to be performed by the lower levels
[171]. It was initially created specifically for the EMOTE project (see Section 7.1.1), with situated robots in mind,
that can also interact through multimedia/virtual interfaces (like a large touch-table). As such, it later became a
common use on other scenarios besides EMOTE, as the place where most of the other components meet in order to

integrate behaviour with the environment. Some of its features are:

* Contain an explicit representation of the virtual and physical environment, by managing coordinates of

relevant targets at which a robot can point or gaze at;

* Autonomously perform contingent gazing behavior, such as gaze-aversion and establishing gaze (the opposite

of aversion), using an internal gaze-state machine (GSM);

» Gaze-tracking a target marked as a Person using the GSM;

» Automatically gaze-track screen-clicks using the GSM (for multimedia application running on touch-tables);

* Maintaining, managing and allowing other components to control utterance libraries;

* Augment the sense of intelligence of the robot, by performing simple back-channelling, and turn-taking with

human users.

67

Regarding the GSM, Skene contains a list of Targets that can be either built-in, loaded from a file, or created
in run-time. Target that are not built-in can also be updated in run-time. Each of them are indexed by a key-word,
and return a pair of angles representing the horizontal and vertical direction of such target in relation to the robot’s
embodiment.

A target can either be specified directly through angles, or through screen coordinates (X, Y), or be a procedural,
built-in target. In the later case, Skene contains code that generates the coordinates for the given Target (e.g. Random
target generates random coordinates). Screen coordinates are converted to angles using the Physical Space Manager
(PSM), where we can define the position and orientation of the embodiment, relatively to the interactive screen.
Therefore, given an (X,Y) point on the screen, it is able to calculate the direction to which the robot should direct its
gaze, in order to gaze at that specified points. This is extremely useful and important when the interaction happens
around a large touch screen, and the robot is explaining or referring to a particular object or region drawn on it.
Some targets can also be set as aliases of other targets. Creating a target called Tiago, linked to a built-in target
Person will allow Tiago to inherit all the built-in semi-autonomous behaviours that are associated with Person.

The GSM can be controlled using two types of gazing behaviours: Gaze and Glance. The difference between
both is that whenever it is instructed to Gaze towards a specified target, that target becomes the new state of the
GSM, whereas a Glance will turn the robot’s gaze direction towards the new target only temporarily (2 seconds)
and will then return to the current gaze state. Note that in any case, the GSM generates lower-level Gaze actions
which are published to be received by the animation engine. Because the nomenclature is the same, it might lead to
some confusion. However internally these represent different actions, as the Gaze action that controls the GSM
takes a single string-type parameter (indicating the new gaze target), while the Gaze action produced by the GSM
contains a floating-point pair that represents a physical direction to gaze at. At the API level the former is actually
called GazeAt. However within utterances, we simplify by using solely Gaze, which do refer to the GSM control
actions, as described below.

Skene Utterances are the actual representations of the aforementioned intentions and were mostly inspired by
the FML-BML pair used in virtual agents and the SAIBA model [37]. They are composed of text, representing what
the robot is to say, along with markups both for the TTS, and for behavior execution. The behavior markup can
be used to control Gazing, Glancing, Pointing, Waving, Animating, Sound, Head-Nodding and even Application

instructions. The following is an example of a Skene Utterance:

<GAZE(/currentPlayerRole/)>I’m unsure if it’s a good idea to
<HEADNODNEGATIVE(2)> build industries near <WAVE(throughMap)>
the populated areas. <ANIMATE(gestureDichotomicLeft)>

<GLANCE (Eco)> What do you think? <GAZE(clicks)>

The behaviors contained in the markup are non-blocking, meaning that while the speech is executed, the TTS engine
sends events whenever it reaches a marked-up position, so that Skene can concurrently launch the execution of that
mark-up behavior. While this seems like a pliable solution, it actually allows the further Realization components to
perform their own resource management. Thus, if for example, the robot needs to gaze somewhere and perform an
animation at the same time, the animation engine is the one to either inhibit or blend the simultaneous forms of

expression.

68

We also include replaceable tags in the utterances, so that these may be used as templates, and completed in
run-time. Tags are specified by enclosing a word with special characters (which may be custom-changed). Therefore
whenever an utterance is invoked to be performed, the invoker must also provide a Tags Table that indexes each tag’s
replaceable word with its current value (to be replaced with). In the utterance shown above, /currentPlayerRole/
is a replaceable tag. These can either be used within the spoken text (e.g. to indicate a user’s name or score), or
within other commands, such as the Gaze command. This allows the utterance to perform behaviours that are
only fully specified at runtime, so that the authoring process is less cumbersome. By including commands such as
<Gaze(/currentPlayer/)>, an utterance can be used at any time, and will include a gazing behaviour that depends on
the current state of the task.

The Skene utterances we have used were developed mostly by well informed psychologists that take part in
the development cycle as interaction designers. In order to facilitate such collaboration, Skene Utterance Libraries
are stored and loaded directly as Microsoft Excel Open XML spreadsheets!. Such feature hugely facilitates the
interaction designers to collaborate between them and with the technical development team by authoring such files
using online collaborative tools such as Google Spreadsheets?.

Most of what we consider to be semi-autonomous behaviours of the robot are triggered and managed by Skene.
These behaviours, described below, were built into this component as they have shown to be useful across different

scenarios.

Gaze-Tracking If the gaze target in Skene it set to a target of type Person, it will generate Gaze commands
towards the tracked persons’ direction, every time the coordinates of the Person are updated. These coordinates
should be updated by an external Perception module that can detect the person, and publish a specific message

that contains the coordinates of the person’s head.

Gaze-breaking Whenever the gaze target is set to a Person, Skene will generate a short Glance to Elsewhere
from time to time, in order to reduce the sense of fixation. Elsewhere is a built-in target that generates random

directions, but only upwards.

Politeness is a feature that acts as a very simplistic turn-taking mechanism. If there are microphones
connected to some Perception module that can detect whether or not a person is speaking, this feature hold
Skene from triggering new utterances while a person is perceived to be speaking. This way people can engage
in conversation with the robot, and even if an Al triggers an utterance in the middle of a person’s sentence,

Skene will hold it until the person finishes.

Questions were considered by allowing any utterance to be marked by the authors as being a question.
In that case it is expected that after the robot performs it, the users might answer back. Therefore, after
performing a question, the robots waits for a certain amount of question-wait seconds (e.g. 7 seconds) before
performing the next utterance, even if it had been invoked immediately. This feature is complemented by the
Politeness feature, as after those question-wait seconds, if the person is still responding to tue question, the
robot will keep waiting until the person is finished. Whenever during the mentioned question-wait period, a

person is detected to start speaking, Skene assumes that the person is replying to the question. Therefore,

IX1.SX: http://fileformat.wikia.com/wiki/XLSX (accessed January 12, 2019)
2Google Spreadsheets: https://www.google.com/sheets/about/ (accessed January 12, 2019)

69

http://fileformat.wikia.com/wiki/XLSX
https://www.google.com/sheets/about/

the utterance authors may also specify a backchanneling category from which Skene will randomly take an
utterance to perform it immediately after the person finishes speaking. With proper authoring, the use of these
features can easily allow the robot to seem like it’s understanding the users, even if no speech recognition or

actual dialogue management is used at all.

5.1.4 Other SERA modules

In order to implement fully interactive scenarios, various other modules were also developed. We won’t go into full

detail, but outline some of the ones that we consider most relevant.

Kinect modules

The Microsoft Kinect has been one of our major components for User Perception. We have used modules both for
Kinect v1 (initially) and then for Kinect v2 after the latter was released. It was used mostly for face-tracking, so that
the Behaviour Manager and Animation Engine can be informed where to look at when performing gaze-tracking.
Additionally we have used it to detect face-direction, in order to have a hint of where the users are gazing at -
however face-direction is not sufficient for that process given that user may be facing a given direction with their
face, while gazing at another one using their eyes. For proper gaze-direction detection one would have to use another
system that can detect eye-gaze direction. Because the Kinect also includes an array of microphones we have also
used it in some situations for speech-direction detection, and from there, to detect the active speaker when multiple
users (faces) are detected. Although it not a very reliable option, it was used in situations where we did not want to
require users to use a lavalier microphone, such as in public demonstrations and events. Another useful detection
that can be made using the Kinect (although we did not use it in our scenarios) is the pointing-direction, by taking
the users’ detected skeletal information, and using the direction of the active arm. However we have found that the
Kinect performs skeleton and facial detection separately, and in cases where the users are sitting, face-detection

works, while skeleton detection does typically not.

Sound Detector

The sound detector modules takes the input of a pair of audio-inputs, such as two lavalier microphones, which can
be connected to the computer using a stereo input audio device (such as a small mixing desk), or even a portable
recorder such as the Zoom H4n or Zoom R6. It was used in user studies in which we did not want to rely on the
Kinect for active speaker detection, and where there was some initial set-up time for the participants. For public
events, placing and adjusting the lavalier microphones would be too impractical, so in those cases we would use the

Kinect.

Speaker Rapport

This module takes the active-speaker detection information (provided either by the Kinect or the Sound Detector,
as both produce the same events), and generates a Gaze action towards the active user. It also performs volume
mimicking, i.e., it takes the measured decibels of the active speaker’s sound, and attempts to match it, so that the

robot will speak louder when the users are excited and speaking louder, and lower then they are more relaxed and

70

speaking lower. The Gaze action does not include coordinate information - instead it instructs to gaze towards the
possible active speaker possibilities (in our case either Left, Right, Both or None). The Behaviour Manager will be
the one to know where the Left or right users are located, and direct the configured Gaze action to the Animation
Engine. When the active speaker is None then it will gaze at a random point. When it is Both, then it will alternately

gaze between each of them with a fixed time interval (e.g. 2000 ms).

Media Player

For scenarios in which participants were required to watch a video with the robot, we developed the Media Player
module, which allows to play media files full-screen in a computer that is co-located with the participant. The

requests to play or stop the media would all come from the scenario’s Al module.

5.2 The Nutty Pipeline for Programmable Robot Animation Engines

The Nutty Pipeline was formulated to inform the design, development and execution of the programmable robot
animation engine. Just like the Nutty Workflow (Section 4.3), the pipeline presented here is deeply inspired on the
work developed previously with the Nutty Tracks animation engine (Section 6.1), which was used as a sandbox to
explore and develop new robot animation techniques for interactive applications [121, 42, 157].

Such an animation engine in Nutty terms, is a program that continuously runs a sequence of steps at a given rate,
in order to produce on-line motion for a robot, based on interactive parameters specified by an Al or tele-operation
module, and on user- and environment-based perception data. The Nutty Pipeline lies within the animation engine,
and configures the steps that run on each animation cycle. The choice of those steps specifies how the motion
is effectively produced, given a set of inputs, rules, and various types of motion generators. The concept of the
programmable animation pipeline is deeply inspired by programmable graphics pipelines such as the one provided
by OpenGL [174]. It means that the actual execution pipeline is not fixed, but instead, can be programmed to specify
both the execution layout, the steps that will run, and how they are parametrized. It allows an animation engine
to be used with different embodiments and applications, by introducing the new concept of Animation Program.

Figure 5.6 illustrates how the Nutty Animation Pipeline fits within a Nutty-based animation engine.

/"_‘J\/.,AY R Animation Engine Embodiment
[Perception }7~
[= = :
\ Al }_,./—r‘ - pecification / \
N)] :
r\ e ¥ - - ~ - L
\ i Animation | | ' .
Input Processin Qutput 1 (Partial)
Processing >>INg Processing GOITEI
| L Unit Frame
‘ v —— - Robot
Animation Pipeline
/ | (real orvirtual) |
Animation Clock N S

Figure 5.6: A Nutty-based animation engine, including the Nutty Pipeline. At each clock cycle, the Input parameters
along with the selected Animation Program are provided to the Animation Processing Unit, which outputs a (Partial)
Animation Frame containing the motion parameters for each programmable DoF.

The Input to the pipeline consists of parameters that are provided by other components such as the A7 or the

Perception Engine. Those input parameters can be very diverse taking several forms such: gaze-target coordinates;

71

expressive posture to exhibit; a pre-designed animation to play; an array of emotional-state values, and even
particular custom commands such as reset posture, or activate idle-motion. There is no fixed specification for the
animation pipeline input, which may need to be designed and developed for each particular situation.

The Output of the pipeline generates an Animation Frame that is compliant with the currently selected
embodiment and output module. Although the embodiment and output are typically enforced to work together,
it is important to distinguish them. The embodiment specification defines the available DoFs and their layout, or
hierarchical structure. The output typically connects with either the Robot Software or the Pre-Viz’s API, in order to
render the animation frame, either on the physical embodiment or on its virtual representation.

An Animation Frame (AF) is a data structure, containing both header information and a matrix of motion
parameters for each programmatically animatable DoF. The header may contain information such as the embodiment
designation and the frame’s delta-time. For each DoF, the motion parameters may have various data types, depending
on the kinematronic dimension of the DoF. For non-integer numeric values, it may be as simple as a single, absolute
set-point (no derivatives), or include 1%, 20d o 31 order derivatives (velocity, acceleration and jerk). However it
may also contain discrete or enumerate values, which are more appropriate for e.g. a display-expression component
with pre-defined expressions. We also distinguish between an Animation Frame and a Partial Animation Frame
(PAF) in that the partial animation frame may contain only part of the whole list of DoFs (or in some cases, even
none - an empty animation frame). This allows the pipeline to output only the signals that have been modified in
each cycle, allowing to control different DoFs at different rates, and to perform blending and other operations using
only a selected set of DoFs. When we refer to an AF is, it always contains parameters for all the DoFs (i.e., a full
animation frame), while a reference to a PAF means that it may contain all or only part of the DoFs, and even be an
empty frame, with no DoFs (which therefore produces no effect).

The central component of the Animation Engine and Pipeline is the Animation Processing Unit (APU), which
executes an Animation Program. In the Nutty pipeline, an Animation Program takes a similar role as a Shader
program in the OpenGL pipeline [174]. The APU can be developed to run at different levels of complexity,
depending on the requirements of the robot-animated application, as illustrated in Figure 5.7.

The main building-block of the APU is called an Animation Block (AB). Multiple variants of ABs are created
for different purposes. Each of these blocks takes in a set of input parameters, and generates a PAF through a
specific method such as playing an animation file, or generating a motion signal through a mathematical formula.
We further distinguish an operator AB as one that takes in a PAF that already contains a signal and modifies it,
versus a source AB, which provides a source for the signal and generates it. In many cases the AB will also manage
an internal state, such as in the case of an animation file player, for which, given the delta-time as input, the AB
calculates the new time-position within the animation, and outputs the respective frame. That allows each AB to
control how the signal is produced in the time-domain, along successive cycles of the animation engine. Given that
they output PAFs and not necessarily AFs, an AB may also be some sort of single-dimensional motion generator
such as a sine-wave or 1D Gaussian noise-generator. The pre-loaded Animation Program will specify the type of
APU that is required, describe the required ABs, and specify how they are laid out into sequences, layers and stages.

The following list provides an overview of various complexity levels for APUs. A given animation engine can
be developed to support only up to a specified level of complexity, or support all of them. Later, the AF will let the

engine know what kind of layout is required to be set-up.

72

Level 0 APU

'R

s Animation

Block

\ M
/-—-\f Level 1 APU (multiblock)

s Animation Animation

Block

—

Animation
Block

Inputs <{

Level 2 APU (multilayer)

Animation Layer

Animation Animation
Block Block
\ J

~

Animation Layer

Level 3 APU (multistage)

Inputs

First Stage

Second Stage

Stage 2
Motion

Processor
{e.g. IK)

Stage 2
Motion
Processor

(e.g.
Path planning)

Figure 5.7: The four types of Nutty APUs.

73

Output

Output

The Level 0 APU is the simplest form of APU, and contains a single Animation Block. Conceptually, a Level 0

APU is also interchangeable with an AB, as both contain a single execution step.

The Level 1 APU supports multi-block processing, or a sequence of Level 0 APUs. Each AB may output to
another AB and therefore it allows for more complex animation, that is achieved by sequential composition

of ABs.

The Level 2 APU supports multi-block, multi-layer processing. Each sequence of AB blocks composes a single
layer and is equivalent to a Level 1 APU. The various layers are blended using a specified Blending Operation,

in order to produce a final, single PAF.

The Level 3 APU supports multi-block, multi-layer and multi-stage processing. At the moment we define only
two stages. The First Stage consists of a Level 2 APU. The Second Stage allows to include more complex
and intensive motion-generation processors such as inverse kinematics (IK) or path-planning. The Stage 2
processors are meant to be used as post-processing steps, and should be applied to several - or all - of the

DoFs simultaneously. Nutty Tracks [121] is an example of a Level 3 programmable animation engine®:*.

Note that depending on the requirements of the animation engine, one may create other forms of APUs, such as a
multi-stage, multi-block APU that does not supports layers, or a multi-layer, single-block APU that does not support

sequential composition.

5.3 Animation Tools for Social Robots

When including creative artists such as animators into the development workflow, one of the first question that
arises is the tools that the artists can use to author and develop expressive behaviour for the robot. Typically those
artists are commissioned to produce only pre-authored animation files that can be played back by the animation
engine. This may be achieved by either developing a custom-build GUI that allows them to directly develop on the
system’s tools, data types and configurations, or to allow the artists to use their familiar animation tools such as
3dsmax’, Maya®, SideFX Houdini’ or even the open-source Blender software®. These existing animation packages
allow to export animation files using general-purpose formats such as Autodesk FBX®. That requires the animation
engine to support loading such formats, and to convert them into the internal representation of pre-animated motions.
Alternatively, and as most of those software support scriptable plug-ins, one may develop such a plug-in that allows
to export the motion data into a format that is designed specifically for the animation engine.

Upon our introduction of the programmable animation engine, and of animation programs, it also becomes
necessary to understand how the animators can contribute to such animation programming, alongside with their

participation in the motion design.

*https://vimeo.com/67197221 (accessed January 12, 2019)

4https ://vimeo.com/232300140 (accessed January 12, 2019)
Shttps://www.autodesk.com/products/3ds-max/overview (accessed January 12, 2019)
Shttps://www.autodesk.com/products/maya/overview (accessed January 12, 2019)
"https://uuw.sidefx.com/products/houdini (accessed January 12, 2019)
8nttps://www.blender.org (accessed January 12, 2019)
Shttps://www.autodesk.com/products/fbx/overview (accessed January 12, 2019)

74

https://vimeo.com/67197221
https://vimeo.com/232300140
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/maya/overview
https://www.sidefx.com/products/houdini
https://www.blender.org
https://www.autodesk.com/products/fbx/overview

3 Untitled - Autodesk 3ds Max 2018 - Student Version - o x
Fle Edt Toos Group Views Create raph Edtors Renderng CwviView Customze Scrpting Content Help. A TiagoRibeiro v workspaces: [Befadlt T
X I sl W7 o (@) 3P 1P B 47 | (¥l hy i | B T IBE o @ W, o wermos R

Modeiing
1/ Polygon Modeling

Select Display Edit Customize

E—

B mmm (R 2 e

B Nutty Tracks Animation Plugin

Cortrol Settings
Create Skeleton Fes: [0 f2

Control Body Speed: 030 &

Save Posture

Q Thalamus
SaveAimation| O Json Object Sream s |
Nutty Output

Body Model: EmysBodyModel

L]
et <[= B saecionses

[T)

LI S Y

™

: 5 » i EJ £ » E L) - » 55 L & m 7 o 8 » 9 10
[10ectselected 6 B x [BENIE v: GaNE 2 G ad - 100 e 4l B 1 01 -_ £ B e,
I Totify TutcyEnys” (&) Add Tme Tag o |om—— [Setkey) 7%, keyrites] >, 9,25

Figure 5.8: A screenshot of the Nutty Tracks plug-in for Autodesk 3dsmax, illustrating the skeletal animation rig
created by the plug-in. An animator can generate this rig through the simple click of a button, and then use the
plug-in to export the final animation to a Nutty-compatible animation file.

5.3.1 Animation Design Tools and Plug-ins

We argue that for simple cases, developing an e.g. FBX import for the actual animation engine run-time environment
is a good choice. In this case the learning curve for the animators is almost inexistent, given that they will be
working on their own familiar environment. They will only need to adapt to specific technical directions such as
maintaining a properly named and specific hierarchy for the joints and animatable elements, so that those can be
properly imported later on. When the nature of the project or application does not allow to rely on third-party,
or proprietary software, then the only option may be to develop a custom animation GUI, which poses as the
most complex and tedious one. However our feeling has been that the creation of plug-ins for existing, third-party
animation software provides a good balance between development effort, usability, user-experience and results.

The creation of plug-ins for existing animation software includes the same advantages and requirements as
in the first case, of developing an animation-format importer for the engine. Animators will be familiar with the
software, but may have to comply with certain technical directions in order for the plug-in to be able to properly
fetch and export the motion data. Figure 5.8 shows an example of the Nutty Tracks plug-in for Autodesk 3dsmax.
By having the EMYS embodiment already loaded in the Nutty Tracks engine, the plug-in can create an animatable
rig for the robot, through the click of a single button, based on the embodiment’s hierarchical specification including
rotation axes, joint limits, etc. Optionally it may even include the actual geometry of the robot for a more appealing
experience. From here on an animator may animate each of the gizmos that were created for each of the robot’s
animatable DoFs, using his or her typical workflow and techniques.

However, the development of such a plug-in also allows to augment the creative development workflow, by

75

adding visual guides directly into the viewports of the animation software, in order to represent technical constraints
that are required specifically for robots, such as kinematic ones (e.g. velocity, acceleration, jerk limits). Figure
5.9 shows an example of a plug-in developed for Autodesk Maya, to show the trajectory-helper of a given mobile
robot platform, which highlights the points in the trajectory that break some of the robot’s kinematic constraints. In
this case, green means that the trajectory is within the limits, while the other colors each represent a certain limit
violation, such as maximum velocity exceeded (orange), or maximum acceleration exceeded (pink) or maximum
jerk exceeded (red). Based on this visual guide, the animator knows where the trajectory must be corrected, and is
able to readily preview how the fix will look like, while making any further adjustments to the motion in order to
ensure the expected intention or expression is properly conveyed without exceeded the physical limits of the robot.

Other useful features may be to perform automatic correction of such constraints, while rendering the result
directly within the animation environment, thus allowing the animators to fix the motion that results from enforcing
such constraints, in a more interactive way. From what we have gathered however, animators are typically not
happy to have a tool that can change and control their animations. Instead, the preferred option is to keep the
artist-animated version of robot untouched by the plug-in, and to create an additional copy of the same robot model.
This copy, which we call the ghost, will, in turn, not be animatable or even selectable by the animator, but instead,
will be fully controlled by the plug-in. Therefore, when the animator is previewing the playback of its animation,
the plug-in will take that motion and process it in order to enforce the kinematic limits. The resulting corrected
motion is however applied only to the ghost, which therefore moves along with the animated robot. If at any point,
the animated motion did exceed the limits, the ghost will be unable to properly follow the animated model due
to the signal saturation, which allows the animator to have a glimpse not only of where the motion is failing to
comply with the limits, but also how it would look like if the limits were enforced. In some cases the animator
might actually feel that the result is acceptable, even if the originally designed motion would report limit violations
on a trajectory-helper solution such as the one of Figure 5.9. Note that in the case of the ghost-helper technique,
whenever the final animation is exported, it should be exported from the ghost robot, which contains the corrected
motion, and not the animated robot which does not.

In summary, the two major robot-animation features we have presented, and that can be provided through the
use of animation software plug-ins, are the trajectory-helper, as presented in Figure 5.9, and the ghost-helper,
described in the previous paragraph. Depending on the animator’s preferences, and the scripting capabilities of
the animation environment, either one or both of the features can be used. The ghost-helper seems to provide a
more agile solution, as the animators aren’t required to fix all the limit violations. As long as they accept the motion
provided through the ghost, the problem is considered to be solved, thus allowing them to complete animations
quicker than using the trajectory-helper. The trajectory-helper however allows an animator to better ensure that
all the points of the trajectory are smooth and natural, and especially that the automatic correction (achieved e.g.
through signal saturation) will not introduce any other unexpected phenomena. This feature is especially important
when animating multiple robots'?, to ensure that each of the individual auto-corrections do not place the robots in
risk of colliding.

Without the ability to preview or at least evaluate the animated motion directly within the animation environment,

the animators would need to jump between their software, and a custom software that solves and reports on those

Onttps://gagosian.com/exhibitions/2018/urs-fischer-play/ (accessed January 12,2019)

76

https://gagosian.com/exhibitions/2018/urs-fischer-play/

pCubel - o x

4144 €D bi I

Figure 5.9: A screenshot illustrating the robot-animation trajectory-helper feature implemented through a plug-in
into Autodesk Maya. This feature draws the motion trajectory as a path directly into the scene of the animation
software, and highlights the points of the trajectory that break any of the robot’s kinematic limits.

issues, while providing typically a mediocre or even no visual feedback on what is happening, and what needs to be
fixed. Besides making it a more complex workflow, that option also hinders and breaks the animator’s own creative
process.

Finally, an additional feature that can be developed through plug-ins for existing animation software is the ability
to directly play the animations through the robot software or interactive pre-visualisation system. This allows the
animators to include testing and debugging into their workflow, by being able to see what will happen with their

animations once they become used during interaction with the users and the environment.

5.3.2 Animation Programming Tools

Animators working with social robot application are required to learn some new concepts about how motion works
on robots, in order to identify what can or cannot be done with such physical characters, as opposed to what they are
used to do in fully virtual 3D characters. Besides having to adapt to certain technical requirements when building
their characters and animation rigs, they may also need to learn how to interact with some other pieces of software
that will allow them to pre-visualize how the designed motion will look on the robots during actual interactions.
At some point the character animators will acquire so many new competencies and knowledge that they become
actual robot animators, an evolution of animators that besides being experts on designing expressive motion for
robots, may also have learned other technical skills as part of the process. One such skill is what we call animation
programming. The difference between a non-robot-programming animator, and a programming-robot animator is
akin to the difference between a texture artist and a shader artist (or lighting artist) in the digital media industry.
The texture artist is a more traditional digital artist that composes textures that are statically used within digital

media. A shader artist is able to take such textures, or other pattern-generators, and configure the shaders (i.e.,

77

programs) to adapt and change according to the environment parameters and applications. The shaders are, in that
sense, programmable textures. Similarly, and animation programs are programmable animations.

Animation programs can, at a very basic level, be specified by some kind of mark-up code. However, we believe
the best option to be taking inspiration from currently existing tools. Both Autodesk’s Slate material editor'!,
and the Unreal Material Editor'?, are well-established artist-friendly shader-programming interfaces. Houdini*
is also known for its visual graph-based visual effects programming system. Pure Data'® allows visual, sound
and performance artists to develop their own musical instruments, visual effects processor, or any other kind of
interactive system, using a visual block-graph paradigm that allows to simultaneously run the program while
also allowing it to be composed, all in real-time. As such, we argue for the creation of similar, artist-friendly,
animation-programming editors.

These new animation programming tools can be built from scratch as standalone GUI application (e.g. Nutty
Tracks), or using game development tools such as the Unity Engine'#, which allows for the scripting of new interface
tools. In this case, because a game engine such as Unity3D also provides 3d visualization and animation tools, it
could be extended by an animation programming tools in order to become a fully-fledged animation designing,
programming and pre-visualization tool.

Nutty Tracks provides an example of how such an editor may be presented'3. Its programmable animation GUI
is also shown in Figure 5.10 and further details about it are further described in Section 6.1. It was conceptualized
to allow an animator to load and pre-visualize how animations and expressive postures designed in another software
(e.g. 3dsmax) will look like when procedural layers of motion are added, such as ones that generate idle-behaviour,
user-face tracking, or inverse kinematics. Such output motion is processed by the Level 3 APU in Nutty Tracks,
and could not be properly visualized within the typical animation design software (which are based on a timeline).
However the process of composing and tweaking the animation program using animation blocks follows a workflow
that is similar to the one found on other artist-friendly applications that inspired us.

Despite such effort, it will still be the case that such an animation program editor will pose as a truly novel
tool for the animators, with a steep learning curve. An animator may e.g. be familiar with the concept of an
animation layer, which does not match the one used in the visual animation program editor. The idea of composing
programmable animations using operator- and generator-blocks may have a paralell with certain motion control
nodes found in some animation software, but the way they are used and composed may also not seem intuitive or
obvious for the traditional 3D animator. As such, it is required that these tools are developed with a user-centered
design perspective, in close collaboration with the end-users, who are the actual animators, and to ensure the GUI
provides an understandable translation between the animator’s mindset, and the underlying mechanics and pipeline

of the animation engine.

Uhttps://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/
files/GUID-7B51EF9F-E660-4C10-886C-6F6ADE9ESF56-htm.html (accessed January 12, 2019)

2https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Editor/Interface (accessed January 12, 2019)

Bhttp://puredata.info (accessed January 12, 2019)

Yhttps://www.unity.com (accessed January 12,2019)

Bhttps://vimeo.com/67197221(accessed January 12, 2019)

78

https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-7B51EF9F-E660-4C10-886C-6F6ADE9E8F56-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-7B51EF9F-E660-4C10-886C-6F6ADE9E8F56-htm.html
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Editor/Interface
http://puredata.info
https://www.unity.com
https://vimeo.com/67197221

T o x
]]
[| i |]

BED |
|
[or]

(e W | e e
=

it

Figure 5.10: The Nutty Tracks GUI, used for animation programming in a multi-layer, multi-block visual editor.
Within the figure, we see several different Animation Blocks. Some of them take PAFs as input and/or output
(black connection points), while others provide colored connection points for single-dimension signals, which are
color-coded depending on the type of signal they carry (e.g. floats, integers, strings, etc..). It additionally includes
an Inverse Kinematics interactive visualizer which allows an animator to tweak some of its parameters, in order to
adjust the generated motion to the robot’s kinematic capabilities.

79

80

Chapter 6

Robot Animation Technology

6.1 Nutty Tracks

Nutty Tracks (Nutty) is a symbolic animation engine based on CGI methods that allows to animate both virtual and
robotic characters [121]. It implements the Nutty Pipeline as a Level 3 APU (Section 5.2) and is simultaneously a
design-time and run-time environment, i.e., it is used both for designing and programming animation, as well as to
execute it in real-time during interaction.

Using Nutty provides us with high flexibility regarding the design, blending and modulation of animations
on any robot. It allows to use professional animation tools (e.g. Autodesk 3ds Max!) to design animations and
postures, and provides a generic translation layer between the character’s animation parameters and the actions and
parameters that arrive from other components in the system.

One of the principles of Nutty is to work on animation at a symbolic level. This means that while the system is
aware of the structural hierarchy of the robot, its animation isn’t processed at the level of the actual joints, but on
symbolic channels, which may represent joint motion or some other signal (similar to [104]). These symbolic joints
can actually be mapped to a real robotic joint, or to a set of joints, thus also allowing to work as an aggregated joint
(e.g. we can animate a 1-DoF joint called VerticalGaze which is later decomposed into several real motors of the
real robot’s neck).

The composing of animation programs in the Nutty Tracks GUI follows a box-flow type of interface greatly
inspired in other programming tools commonly used by artists, such as the Unreal Engine 2, Pure Data® or SideFX
Houdini*. Figure 6.1 shows the Nutty Tracks GUL

We recall here the schematics of the Nutty Pipeline as Figure 6.2 and illustrate the Nutty Tracks APU on Figure
6.3. Note that within Nutty Tracks, NAP stands for Nutty Animation Program. The Body Model is the entity that
contains the Embodiment’s specification, while the Output Plugin is a separate component that can stream the frames
through different transports (e.g. TCP, JSON-TCP), or different interfaces (e.g. Arduino). The input control to Nutty

Tracks is provided through Thalamus, which integrates Nutty Tracks into a SERA environment (Section 5.1.2).

13ds Max: http://www.autodesk.com/products/3ds-max/overview (accessed January 12, 2019)
2Unreal Engine: http://www.unrealengine.com/ (accessed January 12, 2019)

3Pure Data: http://puredata.info/ (accessed January 12, 2019)
“https://www.sidefx.com/products/houdini (accessed January 12, 2019)

81

http://www.autodesk.com/products/3ds-max/overview
http://www.unrealengine.com/
http://puredata.info/
https://www.sidefx.com/products/houdini

Figure 6.1: The Nutty Tracks standalone GUI, used for composing animation programs, and to execute them in both
a virtual window (for diagnostics) and on the real robot.

Animation Engine Embodiment

& Output

Perception

Control
Panel
A

Parameters

Input Q:IOI rcnez‘tsl::ln Output | (Partial)
Processing g Processing Animation
Unit Frame

Animation Plpellne

Specification

Robot
(real or virtual)

Figure 6.2: (reiteration of Figure 5.6) The Nutty Pipeline. At each clock cycle, the Input parameters along with the
selected Animation Program are provided to the Animation Processing Unit, which outputs a (Partial) Animation
Frame containing the motion parameters for each programmable DoF.

-
.

First Stage Nutty Tracks Level 3 APU \ Robot

(realorvirtual)

Animation Layer

Second Stage

- Nutty
Blend K.Invet S: . Motion NuttyOl:ltput
inematics Filter Plugin

Animation
Controller

Animation
Controller

Animation Layer

Animation Clock

Nutty Tracks Heartbeat Cycle request

A

Update Efference Copy Read Output State

Figure 6.3: The Nutty Tracks Level 3 APU.

82

The following is a list of the main features and contributions of Nutty Tracks:

a)

b)

c)

d)

Provide a body-agnostic animation representation
Animation is represented in a generic animation frame type we call the Animation Buffer (Ani-Buffer). The

Ani-Buffer is explained in more detail further in section 6.1.4.

Provide symbolic degrees-of-freedom

By symbolic, we mean that all the DoFs that are animated are just containers of animation data and are not yet
assigned to any specific virtual or hardware articulation. Abstracting DoFs from the skeleton when animating
robots has been previously suggested by [104]. Therefore, a symbolic DoF may either contain motion data
for one specific joint, for an aggregation of joints, or for a non-motor expressive channel such as a LEDs
brightness, or the morph weight of a morph target in a virtual face. The idea behind using symbolic DoFs is to
animate certain expressive channels, and not to specific parts of the animated body. A clear example would be
the Gazing channels. A basic embodiment would be able to gaze vertically and horizontally, which means that
there are two gazing DoFs. However, some embodiments may have several articulations for the VerticalGaze
(e.g. humanoid characters). Nonetheless, what actually matters expressively is the overall vertical angle that
is applied to all the gazing articulations. Instead of having to consider how many articulations a character’s
neck has, we can animate just one high-level angular component which in rendering will be decomposed into
those actual articulations. This allows symbolic gazing animation to be used on any character that is able to

perform gazing behaviour, regardless of the number of articulations it has for doing so.

Modular layered animation controller composition using box-flow

One of the most useful features gained from using a generic animation representation format is that reusable
Animation Controllers (ACs) can be developed to process motion signals regardless of the embodiment that is
being animated. These can then be composed in a controller-chain form, and also in layers so that different
parts of the NAP can be composed independently, and activated and deactivated depending on what is needed.
The composition of the controller chains in the GUI follows a box-flow approach, i.e., the user adds ACs to a
layer and then uses click-and-drag between connection points in order to connects the ACs (more details in

Section 6.1.7).

Control animation parameters from an Al

Nutty Tracks does not intrinsically provide an integration with any type of Al engine. Instead, this is
performed by developing a plug-in for Nutty that connects to that AI. What Nutty provides is that the ACs are
defined with controllable parameters that can be linked to other ACs. Taking as example an AC that generates
a sine wave given an amplitude and frequency, this sine wave can be used to control some DoF of a character.
The amplitude and frequency parameters can either be specified in design-time, or be linked to some other
AC that received input from an Al In our implementation we implemented a Nutty-Thalamus plugin that
allows such information to be provided to Nutty Tracks as Thalamus messages. Note that an AC is like a
blackbox that outputs some kind of signal, and may receive some kind of input. An AC that is part of an
Al plug-in would be a box with no inputs (in Nutty) but that internally receives messages from that Al and
translates them to some signal type and outputs that value. Further detail on the types of signal used by ACs

and AC-Parameters are provided in section 6.1.7.

83

e) Body-agnostic Output
All the previously mentioned goals sum up to the final designation of supporting any kind of embodiment.
By providing a generic animation representation, and being able to compose animation programs out of
reusable controllers, the final animation frame remains in the generic format. Although during execution
the system works with a specific embodiment configuration, the main statement on body-agnostic output is
that the pipeline does not enforce any specific restriction on the type of embodiment that can be used. After
just developing a BodyModel for each embodiment and an appropriate output plug-in, the same animation
system and animation controllers can be used to create different NAPs for each embodiment and context.
Moreover, by providing mechanisms that allow the ACs to be controlled from an external Al, the whole
animation system can be reused along with other components of the overall Al agent, in different applications.

The BodyOutput component is detailed further in section 6.1.2

f) Provide embodiment proprioception to the Animation Controllers
The Heartbeat mechanism was introduced in order to provide the animation engine with the possibility of
performing dead reckoning. It is useful especially on initialization, as it provides an integrated mechanism to
know what is the current state of a robot’s joints and thus avoiding a sudden abrupt movements in start-up.
It can also be used later by Animation Controllers that are created to act based on body feedback. The
Heartbeat response from the embodiment is expected to contain the sensor-measured values of each of the
joints. Optionally it can also provide e.g. the current measured centre of mass if the embodiments has sensors

to provide so, or other data that the Output plugin and embodiment are able to provide.

6.1.1 Execution

Nutty Tracks starts by loading a specified NAP (Section 6.1.3), and setting the specified NuttyOutput and BodyModel
(Section 6.1.2) which contains the representation of the selected character’s embodiment in terms of available
degrees-of-freedom (DoFs) and its hierarchy. The cycle executes the Nutty Animation Program (section 6.1.3)
in its APU. The NAP specifies one full iteration of the animation cycle, and contains a set of layers with chains
of Animation Controllers (section 6.1.7) that will generate and process the motion data into a partial animation
frame represented as an Animation Buffer (section 6.1.4). After each cycle, the final Animation Buffer is sent to the
embodiment via a NuttyOutput plugin. The Animation Cycle can run faster than the specified output rate. Therefore
in order to not overflow the output, the Output component contains a Choker that limits the output rate to a fixed
number. In order to provide smoothness on robotic embodiments, this rate should be at least 30Hz [104]. It also
contains a DirtyFilter, which only outputs the frame if it has been modified in the last iteration and a Repeated Value
Filter (RVF) which abstains from re-outputting values that have not changed since the last cycle.

The Heartbeat Cycle (on the left) runs in parallel. This cycle was added in order to add additional support for
robotic embodiments. While in a virtual embodiment one can render the character immediately with any joint
configuration, robotic embodiments work differently. Instructions are sent to the a servo controller to command
the servos (joint motors) to move to a particular position/rotation, with a specified torque (or speed). Then the
servo acts on its own. The interpolation of the joint between two given angles is actually performed internally by

the servo. Servos therefore generally provide sensors which can be used to read the current position/rotation of

84

a joint. After instructing a servo to move to a particular angle, one can use the sensors to verify not only when,
but if it has actually achieved the desired angle. Hoffman has previously relied on dead reckoning to optimize
the bandwidth of communication with the servos [136]. This technique was adapted from aviation and mobile
robots navigation control. Instead if polling the servos’ sensors after each instruction, they are polled at a slower
rate. Between consecutive instructions, the servos are assumed to have moved according to the motion they were
instructed to perform - this assumed output may be referred to as the efferent copy of the output. Upon sensor
polling, the assumed rotations are corrected. In our pipeline, this polling happens at a fixed rate, slower than the
Animation Cycle (e.g. 5SHz). The retrieved state is then updated in the Animation Cycle and made available to

Animation Controllers.

6.1.2 BodyModel and NuttyOutput

The purpose of the BodyModel is to provide a description of the Animation Channels (further detailed in section
6.1.5) available in a given character embodiment. It is defined externally and loaded in runtime as a plug-in. It is
tightly linked with the concept of symbolic DoFs, as this is the component that informs the system on what the
embodiment’s available DoFs are, and is later used by the NuttyOutput or external animation module to translate
those DoFs to the actual embodiment’s articulation. The BodyModel as seen in figure 6.4 represents a given
embodiment identified by a Name, a hierarchy of BodySets and a list of Enslaving rules. Each BodySet is an
actual list of Animation Channels which represent DoFs of an animatable character. The purpose of having a
collection of BodySets in the BodyModel instead of just a collection of DoFs is towards portability of animations
across embodiments, as long as those all consider the same reference frame. Each BodySet is like a "namespace”
of DoFs. This allows that animation files created for DoFs belonging to a given BodySet may be used with other
BodyModels that contain the same BodySet (even if in overall, they represent a different character embodiment).
An example of this would be to consider a generic Gazing BodySet that contains two Channels: VerticalGaze and
HorizontalGaze. The Enslaving rules are specified to map DoFs from generic BodySets to the DoFs that are specific
to the embodiment.

In order to provide a better understand of the BodyModel, figure 6.5 shows how this would look for the EMYS
robot. It contains three BodySets (one EMY S-specific, and two generic ones), along with how each of the generic
DoFs should be mapped to EMYS’s specific DoFs. Internally within the BodyModel, these rules also contain the
calculation methods for distributing values through the enslaved DoFs.

The common workflow of development for each new embodiment would be to create a plug-in that contains
both BodySets, a BodyModel and a NuttyOutput component. An example of the creation of a BodyModel is further
detailed in Section 6.1.8. As to developing a NuttyOutput, that is tightly connected with the type of output desired,

such as connection to an Arduino, to a TCP server, to ROS, or even back to Thalamus, and can therefore be developed

BodyModelName GenericBodySetl
GenericBodySet2

Hierarchy
Enslaving SpecificBodySet

Figure 6.4: The contents of a BodyModel.

85

name: EmysBodyModel

Body Sets

EMYSBodySet.*

NeckTilt; HeadPan; HeadTilt; LowerPlate;
UpperPlate; RightEyepop; LeftEyepop;
LeftEyeBrow; LeftEyelid;

RightEyelid; RightEyebrow

Hierarchy

NeckTilt (NT)
HeadTilt (HT)

[UpperPlate (UP)] [RightEyePop (PER)]

CoreGazingBS.*
GazeHeadHorizontal; GazeHeadVertical;
GazeEyesHorizontal; GazeEyesVertical;

CoreEyesBS.*

LowerPlate (LP) LeftEyePop (PE,)

[RightEyebrow (RE,,)] [LeftEyebrow (RE,)]

RightEyelid (ct,) | [LeftEyelid (ct) | [E"JEB“”"
Enslaving EmysBodySet.*
GazeHeadHorizontal HeadPan
NeckTilt
GazeHeadVertical [-=-----------1
HeadTilt
CoreGazingBS.*
GazeEyesHorizontal HeadPan
NeckTilt
GazeEyesVertical [-—-----------1
HeadTilt
The EMYS Robot: EyeBlink GELIEEEE
CoreEyesBS.* LeftEyelid
[..] [..]

Figure 6.5: The BodyModel for the EMYS robot (with some example generic BodySets and correspondent
enslavings).

by any software engineer according to those needs. In any case they are the most re-usable component of the
pipeline. Generic BodySets may be distributed in separate libraries in order to be shared by different embodiments.

The NuttyOutput just implements two operations. Animate, given an Ani-Buffer which is result of a NAP
interation, translates the Ani-Buffer using the BodyModel information, and renders it on the embodiment (or sends
it to some external rendering system). HeartBeat polls the embodiment for its the current sensor-based state and
provides the result back to the system. In case of most virtual characters, the HeartBeat can just return the Ani-Buffer

that was provided to the last Animate operation.

6.1.3 Nutty Animation Program (NAP)

A NAP is the sequence of instructions that generates and processes animation data on each frame. The concept of
animation as a program was inspired in computer-graphics (CG), where material shaders are programs that create
and process the appearance of CG objects. In particular, inspiration from artist-friendly visual tools such as the
Unreal Editor’s Material Editor (mentioned in section 5.3.2) encouraged the creation of an animation system based
on small modular pieces that could be composed according to different purposes and outputs. Just as in CG one can
use texture generators (e.g., gradients, Perlin Noise) or pre-designed textures as input, in animation one can either
load pre-designed animations or use motions generators (e.g. sine wave, Perlin Noise). And just as with image date,
animation data can be processed and composed using operators and filters.

In runtime, the NAP serves as a recipe or configuration for Nutty Tracks to set-up the APU. It contains the

definition of the Layers and the chain of Animation Controllers in each layer, along with the initial values for each

86

of the ACs (further detailed in Section 6.1.7). It may also contain other information such as Motion Filter settings,
IK settings, or what BodyModel and Output to use, and any further configuration for them (e.g. COM port, TCP
address and port, etc..). Having all that information in the NAP allows Nutty Tracks to be fully initialized through a
script, and would also allow it to be ran as a headless APU (with no GUI), although the headless version of Nutty
has not been implemented at date.

The creation of a NAP in Nutty Tracks follows a box-flow approach, so that the user can visually create the
controller chains for each layer using the GUI, while immediately visualizing the output that it produces while it is
being created (as happens with the Material Editor in the Unreal Engine’). A NAP can then be saved, so that it can

later be loaded and used in run-time applications.

6.1.4 The Ani-Buffer

The Ani-Buffer (AB) is an object that contains animation information for a given set of DoFs. Its purpose is to
represent a partial animation frame. By partial we mean that it needs not to contain animation info for all of the
DoFs that the animated embodiment possesses, both to reduce the amount of frame data send when used with
robotic embodiments, and to not overflow the lower-level motor control system with repeated data. As seen in
Figure 6.6, this buffer contains some meta-data and a list of Animation Channels that can refer to DoFs of any type
of embodiment. The list is filled in a per-frame basis by Animation Controllers (ACs) that can either generate such
frame values or process existing values (filled in previously in the same animation iteration by other ACs). The

meta-data fields contained in the Ani-Buffer are:

BodyModel to which the given frame applies. On creation, the Ani-Buffer is set to be using the BodyModel

selected in NuttyTracks;

Dirty is a flag used to mark if any data was written to the current Ani-Buffer instance (so that it can by skipped

otherwise);

DeltaSeconds is a double-precision value representing how many time in seconds has passed since the previous

animation iteration;

At each animation cycle, an empty Animation Buffer is created for the first layer, and further fed to the its first

Animation Controller (Section 6.1.7).

[deltaTime: 0.033] ‘ EmysBodyModel {EmysBodySet; CoreBodySet} Dirty: ¥
Channel Value |Mask |Passthrough |Speed i}:’:j(d ValueType
EmysBodySet.HeadPan 520 1.0 0.7 & |AngleDeg
EmysBodySet.HeadTilt 120 ™ 1.0 0.6| M [AngleDeg
EmysBodySet.UpperPlate 0.45| 1.0 1.0/ [([Percent

CoreGazingBS.GazeHeadVertical | -24.0 ™ 0.2 0.6|] M [AngleDeg
CoreEyesBS.EyeBlink 0.0 = 1.0 1.0/ [([Percent

Figure 6.6: An example partial Ani-Buffer for the EMYS robot.

SUnreal Engine Material Editor: https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/Editor/
Interface/index.html (accessed January 12, 2019)

87

https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/Editor/Interface/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/Editor/Interface/index.html

6.1.5 Animation Channels

Each Channel represents an animated expressive DoF (based on the specification of Kinematronics on Section 4.2).
Along the animation pipeline (before being sent to the embodiment), it contains the following information:

e A double-precision animation Value;

e A boolean Mask value which states if the Channel was animated in this iteration;

e A double-precision Passthrough value between 0 and 1 which serves as an “opacity” mask in order to facilitate
per-channel blending (by default it is 1);

e A double-precision Speed value which is defaulted to 1. This provides additional support to robotic embodiments.
It is intended to be used as a multiplier of the robotic servo’s default torque value (i.e., by using a value of 0.5, the
servo should be set to move at half of its default torque speed). This way ACs can also control the torques of a
robot’s servos along with their rotation. A further extension would also allow to include the full motion parameters
of velocity, acceleration and jerk if required

e A boolean SpeedMask value which states if the Channel’s speed was changed from the default value of 1. Note:
SpeedMask and Mask are marked independently;,

e A FrameType option which is Degree by default and represents the type of Value contained in the channel. Degree
means it represent a rotation in degree angles. Other options are Radians, Percent (keeps values between 0 and
1, double-precision) or Valence (keeps values between -1 and 1, double-precision) depending on the needs of the
embodiment (i.e., if animating a channel that actually represents a robot’s light, Percent may be most appropriate to

use).

6.1.6 Ani-Buffer Operators

The Ani-Buffer contains several operators in order to allow Animation Controllers to manipulate it:
SetChannelValue(X) fills in the specified channel with the value X. It also marks that channel as active in the
buffer’s Mask field and sets the Dirty flag.

SetChannelSpeed(S) changes the Speed multiplier of the specified channel to S, sets its SpeedMask and marks the
frame as Dirty;

ClearChannel Value() resets the specified channel to its zero-values and un-marks its flags. If no other channel is
being used, the Dirty flag is unmarked;

Conversion of a channel’s value to another FrameType is provided internally from Degree to Radians and vice-versa.
Conversion to and from Percent or Valence is performed by the BodyModel in order to consider the values’ bounds
(such as joint limits);

Retime(T') changes the DeltaSeconds value of the frame to T

Touch() marks the buffer’s Dirty flag without having set any values;

Clone() creates a deep copy of the Ani-Buffer;

Multiply(D) multiplies all the Ani-Buffer’s active Channels by the double-precision D value;

Add(A,B) creates a new Ani-Buffer containing the result of adding all the active Channels of two given A and B
Ani-Buffers. Values, Speed and Passthrough are all added. The resulting Ani-Buffer uses the same BodyModel as A.

Channels that exist or are active only in A are copied to the result. The same applies to Channels that exist in both A

88

and B but are only active in B; Channels that exist only in B but not in A are ignored.
Subtract(A,B) works as Add, but performing subtraction of values;
Override(A,B) returns an Ani-Buffer that results of copying A and overriding it with the Channels that are active in

B. This allows to combine partial frames by overriding instead of addition.

6.1.7 Animation Controllers and Layers

Animation Controllers (ACs) are blocks of code that perform a specific operation, and output either a single or
multi-dimensional signal. Multidimensional signals are stored as ABs, while single-dimensional signals can be
either floats, integers, strings or booleans.

There are two main types of ACs:
Generators have no main input signal and therefore solely generate an output.
Operators have a main input signal and therefore allow to take the input, process it somehow, and output the result.

Each ACs may also expose several wired parameters, which can be of any of the aforementioned types (including
AB). Figure 6.7 illustrates the GUI that would be created for an example operator AC, which takes as input an AB,
and outputs an AB based on a set of wired parameters. In the GUI we provide color-coded connection points so that

the user knows what type of signals can be connected together (heavily inspired by the Unreal Engine editor).

Input ==
SomeAnimationController \ Color Coding:
E Some Float Parameter 0.156 = ® Float
g Some Integer Parameter 20 = ® Int
g —_— Some Boaolean Parameter] ® Bool
-g' T Some String Parameter StrTng
§ A Trigger Parameter button @® AnimationBuffer

‘—b Output

Figure 6.7: An example animation controller GUI with the signal color-coding using in Nutty Tracks.

Additionally a boolean parameter may also act as an On/Off Trigger to start or stop performing an action, or to
change the output logic of the AC (inspired by the bang of PureData®). In that case, the parameter is initialized
to False and an internal flag active is also set to False. At some moment the input may switch to True during one
single frame (e.g. when a specific event arrives from the Al), which internally triggers some logic to change the
output of the controller accordingly. Upon a change of the Trigger parameter to True, the active flag is also set to
True, and the Trigger parameter is immediately changed back to False. Within the GUI of an AC it therefore acts as
a button. While the internal active flag is True, the controller logic changes. If the active flag is still True and the
Trigger parameter is again set to True, then the active flag changes to False (as does the Trigger parameter), thus
changing back the logic of the controller output.

When Nutty Tracks is launched, the available Animation Controller types are loaded as plug-ins, and as such,

can be created separately from Nutty Tracks depending on our needs, and shared within the community. Therefore

6Pure Data: http://puredata.info (accessed January 12, 2019)

89

http://puredata.info

each Nutty Tracks instance may actually contain a different set of available Animation Controllers, and thus exhibit
different features from another instance, depending on the local plug-ins. This feature turns Nutty into not only a
highly flexible animation software for robots, but also a highly extensible one.

When a NAP is loaded, Nutty Tracks creates the Animation Layers specified in the NAP and instances all the
ACs and connections in each layer. Animation Controllers (ACs) are connected into a chain of execution (Figure 6.8)
that generates and composes animation either procedurally or using animations and postures that were pre-designed
(e.g. with Autodesk 3ds Max).

These chains of ACs are further composed into a hierarchy of layers that can be activated and deactivated during

interaction in order to either blend or override their animated degrees-of-freedom’.

[New AnimationBuffer]

-
-___.— -
-

Layer 1 aweeSmSonoo -——
ﬁ E
AC m Layer2 |= Next
1 AC =
AC AC ; % Stage
AC AC AC AC

Figure 6.8: The structure and flow of a NAP.

Each layer starts with an empty Ani-Buffer (or an efferent copy if the Heartbeat is being used), which is fed
to the first AC of the layer. Each AC processes the input AB and outputs the result to the next AC, or until it reaches
the end of the layer’s AC chain. The output of each layer is blended with the previously accumulated blended AB
following either an addition logic, or an override logic. In any case, only the dirty channels are blended. The result
of blending each two layers (the accumulated blended AB) is then fed as input to the next layer, i.e, except for the
first layer, each one is initialized with the blended result so far. The main chain of ACs is the one that connects the
layer’s start point until its end point (outlined in black).

Besides receiving an AB as input (mandatory for main chain ACs), an AC may optionally have some of its

parameters controlled by other ACs (in the figure outlined in blue), which compose the secondary AC chains.

The following is a list of Animation Controller examples. Many other ACs can be (and have been) implemented as
plug-ins to Nutty Tracks depending on the requirements of the target application.
Generators

* Float:float(value:float) outputs value as a constant float signal.

* RandomFloat;float(min;:float, max:float) outputs a random float value between min and max.

 IntStep:int(step:int, stepSize:int) outputs the integer value step xstepSize (similar to what

MultiplyInt would produce, except that this AC works as a generator, i.e., it has no inputs, only parameters,

7Nutty Tracks: http://vimeo.com/67197221 (accessed January 12, 2019)

90

http://vimeo.com/67197221

and can therefore be used at the beginning of a secondary chain).

* Wave:float(amplitude:float, frequency:float, phase:float, shape:string) generates a sine or square wave

signal based on the value of shape, with parameters amplitude, frequency and phase.
Operators

* AddFloeat:float(input:float, value:float) outputs input+value.
¢ MultiplyFloat:float(input:float, value:float) outputs input x value.
» AbsFloat:float(input:float) outputs the absolute value of input.

 IfFloat:float(input:float, test:float, ifI'rue:float, ifFalse:float) outputs ifTrue if input=test, or ifFalse other-

wise.
* StrConcat:str(input:string, other:string) outputs the result of concatenating input and other.

¢ StrChanged:bool(input:str) outputs True whenever the input value changes between two frames, otherwise

outputs False. This logic is useful to control Triggers.

¢ WriteToChannel:AB(input:AB, channel:string, value:float, [speed:float]) invokes the

SetChannelValue on input to set channel’s value to value and optionally its speed to speed.

¢ AddAniBuffer:AB(input:AB, other:AB) adds the values of each channel in other to the input AB (and

returns the resulting AB).

* Posture:AB(input:AB, posture:string, additive:bool, weight:float) outputs an AB containing the values
specified by the channels in posture, either added to the input or overwriting them depending on the value of

additive, using weight to control the opacity of the blending.

¢ Animate:AB(input:AB, animation:string, speed:float, loop:bool, StartStop:bool, pause:bool) selects ani-
mation and starts playing it from the start whenever the StartStop Trigger is activated. The output advances
the frame of the animation based on the animation’s clock value multiplied by speed. When the animation
ends, it may either terminate, or loop until the StartStop is triggered again. The animation may also pause,
thus outputting the same frame of the animation. Whenever no animation is playing, it acts as a bypass, i.e.,

the input is directly routed to the output.

6.1.8 Nutty Plugins for each robot

In order to control a new robot, a specific NuttyOutput and BodyModel plugins may have to be developed. By
fitting into Nutty Tracks as a plugin, they are loaded during execution, allowing the user to select which output
(and robot) should be used. The BodyModel contains the robot’s hierarchical structure, along with parameters that
specify each joint’s axis of rotation and limits. It also contains the code that translates and executes a generic Nutty
Animation Buffer into the robot’s control API. The referential used in Nutty matches the one used by OpenGL?, and
joint rotations are generally specified as floating point degree angles. The zero-pose (when all angles are set to zero)

is considered to be having the robot facing straight, neutral and forward.

8nttp://www.opengl.org/ (accessed January 12, 2019)

91

http://www.opengl.org/

Figure 6.9: A real Keepon robot and range of execution of its Arduino-hacked servos.

Creating a Nutty Output Plugin for each new specific robot requires some work and expertise. However once it
is created, it can be reused throughout all future projects. Moreover, any plugin for any robot can be shared with
the community. The main advantage is, of course, that one might not need to develop the plugin for a robot if it is
already available locally or in some public repository. The second major advantage is that in case of a robot’s API

upgrade, only this plugin needs to be replaced, while all the animation data and logic programming remains.

Nutty-Keepon example:

We take as example the development of the Nutty-Keepon BodyModel plugin. Keepon was chosen because it is a
well-known and very simple robot. The first step was to understand how the Keepon is controlled in its own API.
It is especially important to outline what units and reference system it uses. The Keepon used in our system was
modified with controllable servos® and connects to a computer using an Arduino'® board. Each servo is controlled
by specifying a target position which is represented by an integer value ranging from 0 to 180 for the Pan, Roll and
Tilt servos, and O to 100 for the Bop servo (Figure 6.9). For that we created an ArduinoOutput plug-in that could
take the animated values and send them to the Arduino through a USB-to-Serial connection.

Because in Nutty Tracks animation is normally specified as degree angles, the Nutty-Keepon’s robot representa-
tion sets all zero-angles (0°) to correspond to servo values of 90 for Pan, Roll and Tilt. As to Bop, it was kept as a
value ranging from 0 to 100, representing a percentage. To test and verify this, a virtual version of the Keepon was
made using Autodesk 3ds Max for modeling, and Unity3D'! for real-time rendering (Figure 6.10). Nutty Tracks
can also be used to control this virtual version by setting the used BodyModel to the Keepon (which is loaded from
the Keepon plugin), while using as output a built-in frame streamer based on JSON'2, which send frames via TCP

sockets from Nutty Tracks to some Nutty-JSON-frame client (in this case the Virtual-Keepon application), instead

9Keepon Hack: http://hennyadmoni . com/keepon/ (accessed January 12, 2019)
10 Arduino: https://www.arduino.cc/ (accessed January 12, 2019)

Unity3D: http://unity.com/ (accessed January 12, 2019)

12JSON: http://www. json.org/ (accessed January 12, 2019)

92

http://hennyadmoni.com/keepon/
https://www.arduino.cc/
http://unity.com/
http://www.json.org/

Figure 6.10: A screenshot of a Virtual-Keepon built in Unity3D with the angular range of movement of its degrees
of freedom. Note the mapping from the real values in Figure 6.9 to the angular coordinates used in Nutty Tracks.

of outputting them to the real robot through the ArduinoOutput.

Animatable CGI model of the robot

We used Autodesk 3ds Max as a host animation software to load a different type of plug-in version of Nutty Tracks.

Figure 6.11: The animatable CGI Keepon robot in Autodesk 3ds Max.

93

This should not be confused with the Nutty plug-ins described on the previous section.

While the Nutty Tracks environment works by loading plug-ins, it can also become a plug-in itself, to a host
animation software such as 3ds Max. That means that instead of Nutty Tracks being ran as a standalone application,
it is programmed in Maxscript'? to run as a 3ds Max plug-in.

Because 3ds Max already provides a complete set of modelling and animation tools, an expert animator was able
to create a proper animation rig along with a 3d mesh of robot’s embodiment with a deformable modifier in order to
more accurately represent how the poses and animations look in the real robot (Figure 6.11). Also, because the
actual Nutty Tracks engine is running within 3ds Max, the animator can animate while watching the result rendered
on the real robot in real-time'*. From 3ds Max, the Nutty Tracks plug-in allows to export both static postures and
animations by baking the selected timeline to an animation file format that was specifically created to hold Nutty

Tracks-loadable animations.

6.2 The Nutty Motion Filter (NMF)

When we take and adapt methods or techniques from CGI animation to robots, it is common to run into a particular
pitfall regarding the generated motion signal. In CGI, objects can move around freely with no physical or kinematic
constraints. As such it is easy to elaborate techniques that produce various kinds of motion, and to shape the
motion into the expected end-results, following on simple interpolation techniques, and even using stepped motions
(ones that are discontinuous). The fact is that virtual motion is, by nature, discrete, so it is always rendered in
discontinuous steps, no matter how small those are, even if any derivatives are also calculated.

In robotics however, the motors are physical and therefore enforce certain kinematic constraints which, if not
met, may result in errant and jerky motion. If one attempts to render a stepped motion on a robotic servo, the
resulting movement will necessarily be continuous, moving from its initial position all the way to the final position,
no matter how fast that motion might be. Even if we #ry to ignore it, inertia and other external forces will always be
playing a part on the resulting motion. Therefore motion generated for robotic use must comply to different norms
than the one produced for purely virtual applications.

In particular, a motion signal generated for a robot should be at least C? continuous, i.e, containing a derivative
of order 2 or more. For servos and motors that power articulated structures in simpler robots, such a C? signal is
typically enough (i.e., motion explicitly contains a limited acceleration component). In the case of more complex
robots, and in particular for motion in space, the motion signal that drives e.g. the path of a robot must be C* (i.e.,
containing jerk, which is the derivative of acceleration), or even more (jounce is the 4th order derivative of motion,
i.e., the derivative of jerk). Furthermore, in addition to angular limits, the mechanics and motors used will typically
enforce a physical limit on each of the derivatives’ value, which, if violated, may result in either physical damage,
or in disorderly motion.

Figure 6.12 illustrates a simple motion signal with 3" order derivatives between two positions (-6 and 6), along
with the limits of each of the derivatives. The signal input is referred to as the set-point, and in this case is a stepped

signal, which is the most basic type of signal that can be used for motion control. Recall that a stepped signal

B3Maxscript: https://help.autodesk.com/view/3DSMAX/2017/ENU/?guid=__files_GUID_F039181A_C072_4469_A329_
AEBOFF7535E7_htm (accessed January 12, 2019)

14Nutty Tracks with Keepon: http://vimeo.com/155593476 (accessed January 12, 2019)

Yhttps://en.wikipedia.org/wiki/Jerk_(physics) (accessed January 12,2019)

94

https://help.autodesk.com/view/3DSMAX/2017/ENU/?guid=__files_GUID_F039181A_C072_4469_A329_AE60FF7535E7_htm
https://help.autodesk.com/view/3DSMAX/2017/ENU/?guid=__files_GUID_F039181A_C072_4469_A329_AE60FF7535E7_htm
http://vimeo.com/155593476
https://en.wikipedia.org/wiki/Jerk_(physics)

T T T T T T T
6~ Jerk Jerk Limit -------

Acceleration Acceleration Limit -------
Velocity Velocity Limit -------
Position

Position

Time

Figure 6.12: A diagram illustrating jerk, acceleration and velocity of a C® continuous motion signal that moves
from -6 to 6.14.

is very undesirable for robots, but is, in fact, the type of signal that is typically produced by a CGI application.
A CGI application typically runs at a high frame-rate (e.g. 60Hz), which generates motion in small steps of %
seconds, which therefore becomes unnoticeable on screen. Therefore, it is generally not required to calculate all the
derivatives that ensure the smoothness of the motion. If such a stepped signal is, however, applied to a robotic servo,
it is likely to cause a lot of audible noise, along with jittery motion, given that, despite the stepped input, the motor
will in fact have to move through the intermediate positions between the current one and the set-point, and that
achieving that motion (velocity) will lead it to accelerate and de-accelerate between each step. Despite this issue,
various authors in the field of HRI have actually used simple position-based motion controllers to control small,
expressive robots motion controllers [104, 136, 22]. As long as the generated motion is slow enough, guaranteed to
seem smooth, and produced at a rate of at least 30Hz, the jittery effect may become mitigated or at least acceptable.

Throughout our work we have, at times, took that same, simplistic approach. However in the long term, we feel
the need for a proper motion filter that can be used as a bridge between any discontinuous, stepped motion such as
the one typically produced in CGI, and the C continuous motion required by robotics. Furthermore, because we
place such a strong focus on the character animation aspect, we also considered it desirable to have a motion filter
that would allow some kind of tweaking, in order to adapt the resulting motion not only to the robot’s embodiment,
but also to its character’s traits, such as mood, personality or emotion.

The Nutty Motion Filter (NMF), presented in this section, solves that problem by:

« Taking as input any C° motion, in real-time, in a sample-by-sample basis (i.e, one sample at a time), in

irregular time intervals;

« Outputting a C*, C? or C? signal corresponding to the input one saturated by its velocity, acceleration and/or

jerk limits, at a steady output rate;

* Providing character parameters that can be tweaked to shape the motion produced, namely in terms of smooth
in/out, smooth damping, or if and how the motion should produce follow-through such as overshooting or

controlled damped oscillation;

95

In addition to the contribution contained in this section, we have also made available an online simulator of the
Nutty Motion Filter!®, which will allow the reader to further test and visualize the motion produced by the NMF,

using various different parametrizations and trajectories.

6.2.1 NMF Definition

The Nutty Motion Filter is defined as the function X (x(t), (), s), where x(¢) : RY — [Pyin, Pmaz] is the motion
signal history, i.e., the previous positions that were output from the filter. The parameters P,,;, and P,,,, represent
the minimum and maximum values respectively. In e.g. a hinge joint, these would represent the angular limits of the
joint. 2(0) is the initial position of the signal and must be specified. The function ¢(i) : Ng — R (shortened to ¢;)
represents the time at each sample 4, such that 0 < ¢,y < t;, and t; — t;_1 = At, where At is a fixed time-step,
calculated from the sample rate R, such that At = %. The sample rate should be chosen based on the requirements
and capabilities of both the robotic and computational systems, and must be at least equal to the desired output rate.
Therefore 30-100Hz are typically acceptable sample rates. Note that from this definition, 7 refers to the current
sample, and therefore the current time is represented by ¢;, while the time of the last sample is ¢;_; and so on. The
set-point s is the new target position, and is used to calculate the induced velocity i(t;) as specified in Equation 6.1.

Finally, x(t;) represents the output that will be computed of the filter at the current time (not in the history yet),
while s therefore represents the input. As such, @(t;) must be calculated from s instead of x(¢;).

75_12271) ,lfk =9

i(ty) = ©.1)

% otherwise

We start by dealing with the problem of limiting the position output of the motion using Equation 6.2. This
output saturation function Q(, 2, Paz, Prmin,) takes the induced velocity and the current output position and
prevents the induced velocity from moving the signal beyond the minimum and maximum values P, 4, and P,;,.
As seen in the equation, the induced velocity is reduced by € as the current output position approaches either the
minimum or the maximum limits, while through the central portion of the motion range, the velocity is untouched.
This approach differs from a hard limiter on the output (clamping), by providing some control over the motion
before it reaches the position limit. Instead of causing a hard break, we can induce a de-acceleration up to a complete
stop, when the output motion is approaching its limits. However the saturation is only applied when the induced
velocity moves the signal towards the limit, i.e., if the current position is above its center (given by «), then the
velocity is only saturated when it is positive, and if the current position is below the center, the velocity will only be
saturated when it is negative. Without this remark, the velocity would become stuck at zero upon hitting the edge of
the motion range, as this saturation function would not allow it to move away from the it. The S parameter controls
the exponent of this de-acceleration, thus allowing to control how close to the limit the output is allowed to get
before being saturated. As 3 increases, the saturation becomes more similar to a hard clamping function. The effect

of different values for the 3 parameter is illustrated in Figure 6.13.

Bhttp://www.tiagoribeiro.pt/nutty/motionfilter.html (accessed January 12, 2019)

96

http://www.tiagoribeiro.pt/nutty/motionfilter.html

2p
i - (1 <Iia>) if(x>a&i>0)|(r<a&i<0)
Q(i'7xapmaz7pmin76) =

z, otherwise (6.2)

1 20 —20}—

(a) Output of 2 using 5 = 5. (b) Output of Q2 using 8 = 20. (c) Output of 2 using 5 = 100.

Figure 6.13: Comparison of the output saturation function {2 given the minimum and maximum limits of [—10, 20],
using three different exponents 8 € [5, 20, 100].

Additionally we define the derivative saturation function A(z) : R — R. This saturation function is individually
applied to each of the motion signal’s derivatives in order to enforce the physical limits that are imposed by the
robot’s embodiment, i.e., enforce that their absolute value does not exceed a given value limit k. This function
may e.g. apply hard limits (described in Equation 6.3 for exemplification purposes), or provide smooth limits as
described in Equation 6.4, where k € R{ is the absolute limit value, such that [\(z, k)| < k,Vx € R. The latter
one (Equation 6.4) was chosen for the NMF, as it progressively saturates the input signal while it is approaching its
limit, in order not to induce a hard break when the limits are reached, thus alleviating the motion oscillation that
would be introduced through the use of the hard limiter.

In fact, using the tanh-limiter, the real limit is never reached, given that the input would have to be infinite for
it to happen (lim;_, o, tanh(z) = 1). Being based on the hyperbolic tangent, this saturation function produces a

signal that is also continuously differentiable (contrary to \’, which is C?).

N(z, k) = min(k, maz(—k,z)) (6.3)

A, k) = g -tanh(m/g) (6.4)

Using the equations of motion directly to calculate the final motion upon saturating the signal would still lead,
however, to some oscillation, especially in our case, where the filter digests set-points in real-time, unknowingly of

when the set-point and motion will come to a rest. The length and amplitude of such oscillation would depend on

97

the filter order and the physical limit values.

We have however devised an additional velocity transfer function H (v) (also referred to as stabilization function),
presented in equation 6.5 that softly brings the motion to a rest once it starts to approach its latest given set-point. The
transfer function is applied to the saturated induced velocity. This stabilization function uses two hyper-parameters
{0, p}, representing smoothness and responsiveness respectively, that allow to tweak the filter, changing how
quickly it responds and how much it is allowed to oscillate. We call these the character parameters, as different
configurations for them will shape the motion differently. As such we argue that they can be used to model different
character traits, even when the same physical limits are enforced. The smoothness parameter o will ease out the
oscillations. However, depending on other filter parameters such as the physical limits, fully easing out might
become too slow and make the motion seem too muddy and flat. That is where the responsiveness parameter p
comes in, which allows to precipitate the easing out, so that it may still be smooth, but faster, and thus, more
responsive. While these concepts of smoothness and responsiveness may seem antagonistic in the context of a

motion signal, they will be better explained further through illustrative examples.

1—0o
H(U):;(tanh((l'fp) —7r>—|—1>,0§0§1,0§p<1 (6.5)

Based in the output saturation function {2 from Equation 6.2, on the derivative saturation function A from
Equation 6.4, and the stabilization function H from Equation 6.5, we present below the final equations for either a
C3, C? or a C! NMF filter. Recall also the definition of @ (¢,) from Equation 6.1. Higher order filters can also be

inferred, based on these equations.

Equation 6.6 contains the C2, or 3¢ order NMF variant, defined as x3(z,t, s).

x3(2,t;) = x(ti—1) + AMWs(z, t;), velocity_limit)

§(w,t;) —a(ti1)
At
vH@)—d(tio1) _ gy (6.6)

At w(tlfl) . .
At , jerk_limit)

v = Q(j"(ti%x(ti—l),Pmaw;Pmi’rmﬁ)

Y3(w,ti) = @(ti-1) + A(

, acceleration_limit)

Equation 6.7 contains the C?, or 2" order NMF variant, defined as X2 (z,t, 3).

Xo(@,ti) = @(ti—1) + A(¥2(, t:), velocity_limit)
v - H('U) — L-C(tifl)
At
v = Q(ﬂ‘:(ti%f(ti_l),P’maz, P?‘YL’MHB)

Ya(x,t;) = &(tiz1) + A(, acceleration_limit) 6.7)

Finally, equation 6.8 contains the C' 1 or 15t order NMF variant, defined as x1(x,t, s).

x1(z,t;) = x(ti—1) + M(v - H(v), velocity_limit)

v = Q(i'(ti)ax(ti—1)7pmaatapmmaﬁ)

(6.8)

98

6.2.2 Usage and Examples

In order to demonstrate and exemplify the usage of the NMF, we will be defining a set of example filters and example
input signals, for which we will then illustrate the transfer function of the example filters along with the output that
results from applying them to a given example input signal. Throughout this section, the graphs presented show the
position output that is produced by incrementally calculating the filter at each time-step ¢ € [0, T}na4), at a 60Hz
sample rate (steps of 61—05). The figures also display the resulting velocity, acceleration and jerk (when applied).
Recall that the filter is calculated on a per-sample basis, and has no look-ahead information on the trajectory (which
allows it to be used in real-time applications). Therefore on each moment, the filter knows only what is the current
set-point, and what were the previous output positions and derivatives, thus the graphs presented are accurately

representative of the output that would be produced by each filter in a real-time application.

Example Filters

We start by defining a set of example filters in Table 6.1, organized into groups (Regular, A, B C, D & E) based
on their hyperparameters definition, i.e., the set of character parameters and physical limits. Within each group,
there are 15¢, 2% or 37% order variants, and either may use the Tanh limiter function (Equation 6.4), or the Non-tanh
limiter function (Equation 6.3). Each example filter is designated by a name in the format X2, where « is the order
of the filter, and £ is its hyperparameter group, followed by the symbol)\’ in case it does not use the Tanh-limiter
(the X\ symbol is omitted otherwise). Although we chose and strongly recommend to use the Tanh-limiter with
the NMF, we will be demonstrating both versions in order to illustrate how it impacts the output of the filter. The
Regular filter represents one in which our stabilizing transfer function H is bypassed, and therefore it contains no

character parameters.

Example Input Signals

Figure 6.14 shows three different input trajectories that were used to demonstrate the filter across different conditions.
The first input @y, illustrates a very simple linear trajectory in which the set-point for the position is moved

instantaneously from 5 to -5 at time ¢ = 2.5, and then back to 5 at ¢ = 7.5.

99

Hyperparam Filter Limiter =~ Order Smooth Responsive Kinematic Limits

Group Name Vel. Accel. Jerk
Regular Mv{;’ N‘g;i“h 3rd - - 20 100 10000
3
X4 Non-tanh grd
A X3 Tanh 1.0 1.0
slow & smooth X4 Tanh ond ’ '
A st
Xi Tah 20 100 10000
XEX Non-tanh grd
B XB Tanh 01 0.0
slow & vivid XB Tanh ond ’ '
XEB Tanh 15t
x§ A" Non-tanh grd
C x5 Tanh 0.1 0.0
fast & vivid x§ Tanh ond ’ ‘
xX¢ Tanh 18t
DN
5)§? . N‘?'tinh grd 90 700 50000
3 an 095 1.0
fast & smooth xPp Tanh 2nd ' '
xp Tanh 15t
E XF Tanh 3¢ 095 02

fast & smoother

Table 6.1: Definition of filters used in the examples throughout the current section. As a mnemonic, the subscript of
the filter name represents its order (1, 2 or 3), while the superscript represents its hyperparameters group (3 distinct
sets A, B C' D & FE), along with an additional)\’ in case it uses the Non-tanh limiter. Additionally the Non-tanh
filters were shaded to improve readability.

5r———mm——m s oo
4 | 1
3 i ! R
2 ! : 3 ! t H
§ ! ! 1 2 DR T & \
Z 0 | ! g ! !
© A] : S o [
:,‘ | I) !
5 S D N BN I -3 R e
0 1 2 3 4 5 6 7 8 9 10 -4 e
Time (seconds) o 1 2 3 4 5 6 7 8 9 10
(a) Example linear input ®1, as a highly discontinuous fime (seconds)
input. (b) Example input ® i as a random input.
15
T Tk
L R i
c 5 e =
] |t i~
Z 0 =1 _r=
& - =
5 bt T -
] T
10 v R YR
-15
0 0.5 1 15 2 25 3 35 4 45 5 5.5 6 65 7 75 8 85 9 95 10

Time (seconds)

(c) Example input ®¢ as a stepped circular trajectory (in one dimension only).

Figure 6.14: Three example input trajectories, used to demonstrate the use of the Nutty Motion Filter.

It is intended to show how a filter responds to a large change in the input signal. The second input ® r illustrates
a case in which the trajectory set-point is randomly adjusted at each second. It is intended to show how a filter
responds both to small and large changes in the input signal. The third input ®« illustrates a case in which the final

trajectory was a circle. In this case we see only one of the two dimensions of the circular trajectory. This trajectory

100

however, was discretized into 50 points, thus producing a small step at every 0.2 seconds for the 10-second long

trajectory. It is intended to emulate what in CGI would be seen as a smooth signal, but is, however, a stepped input.

Example Filters’ Transfer Function Response

Figure 6.15 contains four plots that illustrate the transfer function for different hyperparameter groups. The top
graphs refer to groups A and B, which both share one set of slower physical limits, while the lower graphs refer to
groups C and D, which share the other set of faster physical limits. The transfer function of B and C are actually
equal (same character parameters {o, p}), however they consider different physical limits. This is reflected in the
plots, as each shows the output of H(x) being = € [0, VelocityLimit]. As such, x € [0, 20] for groups A and B,
while z € [0, 90] for C and D.

— Hx) — Hx)
20 20

0. }
0.15 i 0.15
005 3 _ 005
0.01 : i £ o001

0.002 / ! 0.002

0.0005 { | 0.0005

0 t ! 0

ra oo
o
P

H(x)

& SN N A i

S @Qh Q@w s & 0(': L N Y 98P ° §Q‘° Q@”’ K S X oo
N X o X
(a) Transfer function of group A(c = 1.0, p = 1.0). (b) Transfer function of group B(c = 0.1, p = 0.0).
— HX) — H(x)

*

%0 + %0 '
20 / 20 /
5 ; i 5 i
: 1 C
i : £ 02 / ‘

T 005 i

02
0.06

0.01 0.01

0.002

0.0005

=
I

0.002
0.0005

0 i : 0 ! :
0 0.0005 0.002 0.01 005 02 051 2 5 20 90 0 0.0005 0.002 0.01 005 02 051 2 5 20 90
X X

(c) Transfer function of group C'(o = 0.1, p = 0.0). (d) Transfer function of group D(o = 0.95, p = 1.0).

Figure 6.15: Plots of the different transfer functions specified by each hyperparameter group A, B C & D. The
domain of these graphs is « € [0, VelocityLimit], thus corresponding to [0, 20] for A and B, and to [0, 90] for C'
and D. Also note that filters in groups B and C share the same character parameters, which results in the same
transfer function, confined only to a different domain. All graphs include three distinct points in the x axis as an aid
to interpret how they differ.

Output Examples using the Nutty Motion Filter

Through this section we will be comparing various graphs in order to illustrate how the filter’s response changes both
given a different set of character parameters, physical limits and input trajectory. We will also take the opportunity
to demonstrate how the tanh-based limiter differs from a non-tanh-based limiter, and even to demonstrate how a
given filter would behave without the use of our stabilizer function.

Using the simpler ®;, input, Figure 6.16 shows on the top left (a), the output of X3!, with the tanh-limiter, in
comparison with X 5“’\/, on the top right (b), which uses the non-tanh limiter. The hyperparameters for this filter
group (A) make it what we would call a slow character, given that the motion takes some time to respond, and then
again to become fully stationary when the set-point has rested.

Observing the derivatives’ curves, the difference between the two variants becomes clear. In the first case, they

never hit their maximum value, and are all smooth, as they are based on the hyperbolic tangent. The output of the

101

—— Position —— Velocity —— Acceleration —— Jerk — -~ Set-Point

10000 100 20 6 6
5y ! 4
5000 50 10 '
§ .5 g2 ! 2
x ® = S i
i 003 05 0%F0 [}
E g 2.8
< v T2 2
-5000 -50 10 4
15 4 -
-10000 -100 20 -6 -6
0 1 2
Time (seconds) Time (seconds)
. ’ . . .
(a) Output of Filter X ?(wnh tanh limiter). (b) Filter X. §4’\ (with non-tanh limiter).
Motion Filter Plot X
=~ Position —— Velocity —— Acceleration —— Jerk — -~ Set-Point
10000 100 20 6
15 N |] remem——ate- Motion Filter Plot X
5000 50 1@ 4 H \ / Wi Velocity —— Acceleration —— Jerk — -~ Set-Point
§ L 52 : ! |1 A nn ‘
i 05 038 0% o ’) 500 4 N H ‘
SO o fsd I l : il
5000 < 50 -10 ’ | N g2 2 2 Il 0T
-15 4 1 ! 5000 < 4 \ / :
__________ -15 -6
-10000 -100 -20 6 |
0 1 2 3 4 5 6 7 8 9 10 0000- 00 BT S T s & 1
Time (seconds) Time (seconds)
!’
(c) Output of Filter W5(H (z) = =, with tanh limiter). (d) Filter W3 (H (z) = =, with non-tanh limiter).

Figure 6.16: Comparison of the effect of the tanh-limiter on the output the Nutty Motion Filter. Top row: The
output of filter X3'(a) compared to filter X é“’\,(b). Bottom row: The output produced by the NMF equations if the
transfer function was bypassed, i.e., making H(x) = x, while using the tanh-based limiter on the left (c), and a
non-tanh based limiter on the right (d). All four plots are produced from the simple input signal ®..

tanh-based variant becomes, however, slower, because the velocity was in general, confined to a lower value than in
the non-tanh version. This illustrates the implications of the tanh-limiter on the output motion - the system will,
in general, produce an output that is slower than physically allowed, by creating what we call a headroom'®, that
allows to smoothly accommodate cases in which a very large change is induced by the input signal. Due to this
feature of the tanh-limiter, we differentiate the maximum value of a derivative, from its maximum sustained value.

Taking as example the first derivative, that maximum sustained velocity will be the absolute value at which the
velocity tends to hold as constant (about 5 in Figure 6.16a), in contrast with the real maximum absolute velocity (20
in the same Figure), which is the hyperparameter used to parameterize the filter, and includes the headroom.

For a reference, on the bottom row we also present the output of the signal that would be produced if we
bypassed our transfer function, i.e., making H(x) = x. In this case we see on the bottom left (c) that the signal
actually responds quickly with some slight oscillation when using the tanh-based limiter, and results in severe
oscillation when using the non-tanh limiter (bottom right (d)). Without the transfer function, the output only starts to
stabilize after it has reached the set-point. Therefore, we can observe, on the left-side, that the W3 filter accelerates
until it reaches a maximum velocity and continues that trajectory until it reaches the set-point. Only then does it
attempt to stabilize the output. Because it was going too fast and even overshot it, some oscillation was produced,
which however, was mitigated by the use of the tanh-limiter. However, on the X3'filter we see that the output
starts to de-accelerate much earlier in order to allow the output to stabilize smoothly without oscillating. These
graphs therefore show that although bypassing our transfer function is a possibility, we would have no control over
how fast or smoothly the filter responded, except by tweaking the physical limits, which would be an undesirable
requirement.

Figure 6.17 show a comparison of the same input signal using the 3"¢ order variants of the B, C' and D filter

groups, again with both their tanh and non-tanh based variants. In this set of examples we have varied the character

16Borrowed from the concept of headroom used in digital audio. https://en.wikipedia.org/wiki/Headroom_(audio_signal_
processing) (accessed January 12, 2019)

102

https://en.wikipedia.org/wiki/Headroom_(audio_signal_processing)
https://en.wikipedia.org/wiki/Headroom_(audio_signal_processing)

parameters and physical limits. When we parameterize the filter to provide a more vivid response as in filters
X 3])3 (Fig. 6.17a) and X. 3C (Fig. 6.17c), we do encounter a slight oscillation effect. This oscillation is, however,
introduced due to our choice of the parameters, and is therefore a controlled oscillation, i.e., one that would allow
the character to exhibit some overshooting and follow-through animation, in order to convey a sense of weight and
inertia. If that oscillation is fully undesirable, we may parameterize the filter further to produce a fast and steady
response, as seen in filter X2’ (Fig. 6.17¢).

On the right side of the figure, the non-tanh limiter shows a faster response in comparison with the tanh-based
limiter version, but then after the output overshoots, it struggles to stabilize the signal quickly, thus leading to the
oscillation. It becomes clearer why the tanh-limiter became our choice for the NMF as it allows us to tweak the

shape of the output signal (as seen on the left), without introducing that undesirable oscillation.

Motion Filter Plot X

—— Position —— Velocity —— Acceleration —— Jerk — -~ Set-Point
10000 100 20 6
5 2 — . rmmmm————= Motion Filter Plot X
5000 50 10 4 H i L0000 100 33 Pestion — Veloolty — Acceleraion —— Jerk - - - Set-Point
E s osg? | hl k ﬂ [e 1M ‘
= 0 g 0 g 0 % 0 !) s000 50 0 4 ; ’~ | /
g g s , 3 0 § . os5go2 ! \ \
;(03 Z he | K 05 08 0%x o0 U | il i
5000 50 10 ! i 1 g 2 58 T 1!
5 4 1 i so00 ¥ 50 0 4 \ ! b L ;
"""""" A5 8 M
0000 -100 20 -6 M =
0 1 2 3 4 5 6 7 8 9 10 B T it
Time (seconds) Time (seconds)
. B, - L. . BA . L.
(a) Output of Filter X3’ (with tanh limiter). (b) Output of Filter X3°* (with non-tanh limiter).
Motion Filter Plot X
— Position —— Velocity —— Acceleration —— Jerk — - - Set-Point
50000 700 920 6
40000 600 . Moion Fitter Plot X
400 50 4 : | so000 o o Postten — Velosty — Accsleraion — Jerk - -~ Set-Pant
20000 £ 00 L2 1 s000 600
x T 5] | 400 50
g u§ o§ “50 § 06 L 5] \
20000 & “2° -2 i Eoog o8 of o———— i AL I
400 50, : i a0 § 05
-40000 -600 — = AA -400
50000 700 90 6 o B e
0 1 2 3 4 5 6 7 8 9 10 ~ - -
Time (seconds) Time (seconds)
. Cy s o . . o) . .o .
(c) Output of Filter X3 (with tanh limiter). (d) Output of Filter X3 * (with non-tanh limiter).
Motion Filter Plot X
—— Position —— Velocity —— Acceleration —— Jerk — -~ Set-Point
50000 700 9% 6
40000 600 B = Motion Filter Plot X
400 50 X | 20000 100, 35 PoStion — Velocty — Acceleraion —— Jerk - - - Set-Point
20000 £ L0 2 ' w600 :
~ s o £ S in 400 50 5 —
2 0 % § 0 g 0 ‘\, 20000 % 200 . s
- [1 = 8] -]
20000 & 2 -2 | § oy 0f 0% o0
-400 -50 4 : : 20000 & -200 - . .
40000 600 L oo 400 50
50000 700 90 -6 - 0
0 1 2 3 4 5 6 7 8 9 10 So000= TS 80° A0
Time (seconds) Time (seconds)
0 f Filter X4 (with tanh limi 0 f Filter X' (with h limi
(e) Output of Filter X3 (with tanh limiter). (f) Output of Filter X3 (with non-tanh limiter).

Figure 6.17: Output of the 3" order filter of groups B, C and D, using the simple input signal @ .

In Figure 6.18 we can see a comparison between three different filter orders for each of the hyperparameter
groups A, B, C' and D using the same simple Phiy, input. This figure allows to verify that the filter’s response
shape remains consistent across different orders, given the same character parameters and physical limits. What
also observe that the maximum sustained velocity increases as the filter order decreases, thus suggesting that we
should use the least order filter that the embodiment allows, in order to take the best advantage of the embodiment’s
kinematic capabilities.

In order to better conclude about how various filter parameters respond to different trajectories, we include some
additional sets of plots.

Figure 6.19 shows the plot for each hyperparameter group A, B, C and D, using the random input trajectory

103

10000
8000
6000
4000
2000

Jerk
)

-2000
-4000
-6000
-8000
-10000

10000
8000
6000
4000
2000

Jerk
o

-2000
-4000
-6000
-8000
-10000

10000
8000
6000
4000
2000

Jerk
°

-2000
-4000
-6000
-8000
-10000

10000
8000
6000
4000
2000

0

-2000

-4000

-6000

-8000

-10000

Jerk

Acceleration

Acceleration

Acceleration

Acceleration

100
80
60
40
20

-20
-40
-60
-80
-100

100
80
60
40
20

20
40
60
-80

-100

100
80
60
40
20

-20
-40
-60
-80
-100

100
80
60
40
20

-20
-40
-60
-80
-100

Velocity

Velocity

Velocity

Velocity

—— Position —— Velocity —— Acceleration —— Jerk

20

15

Set-Point

5 T 5 5

4 | 4 4 4

3 : T 3 3

2 + 2 2
51 i 1 1
Z0 ¥ 0 0
&1 R K]

2 2 2

-3 -3 -3

4 4 4

5 5 5

0 1 2 5 6 9 10 0 1 2 4 5 0 1 2 3 4 5 6 8 9 10
Time (seconds) Time (seconds) Time (seconds)
f Filter X3 f Filter X3' f Filter X{*
(a) Output of Filter X3'. (b) Output of Filter X5". (c) Output of Filter X7".
= Position —— Velocity —— Acceleration —— Jerk ——— Set-Point
6 - T I — [T ; 5 =
L | 4 i

4 E i 4 i H 3 i |
c2 i 2 ! 2 i
S ! 1 i
30 0 0 !
2 ‘
< I I El

2 : -2 ‘} 2

-4 i 4 |] 3

! ! G
1 1 !]
-6 I 6 N A TN SN S——— 5 -
0 1 2 3 4 5 6 7 8 9 10 0 1 10 0 1 2 3 7 8 9 10

Time (seconds)

(d) Output of Filter X£.

= Position —— Velocity —— Acceleration —— Jerk ——— Set-Point

Position

Time (seconds)

(g) Output of Filter X§ .

= Position —— Velocity —— Acceleration —— Jerk ——— Set-Point

LR

Time (seconds)

(j) Output of Filter X2

4 5
Time (seconds)

(e) Output of Filter X 2.

4 5
Time (seconds)

(f) Output of Filter XZ.

Time (seconds)

(h) Output of Filter X¥ .

(k) Output of Filter X2

4

Time (seconds)

Shbblioanvwsa

Time (seconds)

(i) Output of Filter X

Hhbbhoanvwesa

Time (seconds)

(1) Output of Filter X .

Figure 6.18: Comparison of the 3"¢, 2" and 15! order filters for hyperparameter groups A (first row), B (second

row) C' (third row) and D (last row), using the simple input signal .

104

® . In this trajectory we see how each filter responds both to large and small set-point changes. Filter X. é“is too
slow to actually reach the set-points through half of the trajectory. Filter X £ performs better there, but adds some
overshooting which can be seen as a small bump. Filter X{'is too loose, and although it reaches the set-points
quickly, it introduces not only overshooting but also some oscillation. Filter X illustrates what we consider as a

fast and steady response, with nearly no overshooting.

105

10000
8000
6000
4000

2000 s

Jerk
o

-2000
-4000
-6000
-8000
-10000

10000
8000
6000
4000

2000 s

Jerk
(=]

-2000
-4000
-6000
-8000
-10000

50000
40000
30000
20000
10000

Jerk
o

-10000
-20000
-30000
-40000
-50000

50000
40000
30000
20000
10000

Jerk
o

-10000
-20000
-30000
-40000
-50000

Acceleration

Acceleration

Acceleration

Acceleration

100

100

700
600

400
200

-200
-400

-600
-700

700
600

400
200

-200
-400

-600
-700

Velocity

Velocity

Velocity

Velocity

Position

Position

Position

Position

Hhh bbb soaanoe s

—— Position —— Velocity —— Acceleration —— Jerk — - — Set-Point

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 55 6 6.5 7 75 8 8.5 9 9.5 10

Time (seconds)

(a) Output of Filter X3'using the random input signal ® .

[}

L}

[} 1 L
[ip——

QAW =20 =2 NWw A
) mm—
—

0 0.5 1 15 2 25 3 35 4 45 5 55 6 6.5 7 75 8 85 9 95 10

Time (seconds)

(b) Output of Filter X B using the random input signal ® .

4
3
2
1
0
-1
2
-3
4
5
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Time (seconds)
(¢) Output of Filter X§ using the random input signal ® .
4
3
2
1
0
-1
2
-3
4
5

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Time (seconds)

(d) Output of Filter X. b using the random input signal ® r.

Figure 6.19: Comparison of hyperparameter groups A, B, C and D, using the random input signal ® .

Finally, Figure 6.20 shows the plot for each hyperparameter group A, B, C, D and additionally F, using the

circular input trajectory ®. These plots how each filter responds to an input signal that is continuously changing in

small steps - which in some cases is actually a challenge. Most of the remarks from the previous set of plots (Figure

6.19) also apply here. However we have added the additional X filter as a version of X with a lower responsive

parameter. The purpose of this final set of plots is to show that not only will the selected character parameters

depend on the intended shape and smoothness of the signal response, but must also consider how the input signal

will be generated and fed to the filter.

106

9.5 10

h

iy

9.5 10
10

I
I
9.5

8.5
|
il

8.5

8.5

75
7.5
75

Time (seconds)
5

Time (seconds)
5

Time (seconds)
5

Time (seconds)

|
[

'J

25

15

—— Position —— Velocity —— Acceleration —— Jerk — —— Set-Point

(a) Output of Filter X3'using the circular input signal ®¢.

(b) Output of Filter X B using the circular input signal ®¢.
|

(¢) Output of Filter X using the circular input signal ®¢.

(d) Output of Filter X2 using the circular input signal ®¢.

0.5
l!
/
0.5

15
10

w o Y

L o v o
i -

-15
15
10

5
0
5

-10

5
15
10

5
0
5

-10

-16
15
10

10

-15

uopisod uopisod uopisod uopisod uopisod

L o 1B o

20
15
0
5
20
20
15
0

n o 1w o 1’
e e

oo O o O o o o o
®0 © T N S]

oo o o O o =

=} oo 9o o Qo
o0 © ¥+ N G

FSTSF

-20
-80
-90
-60
80
90
90
80
6f
60
-80
90

Ayoolap Ayoolan Ayoolap Ayojen Ayoolap

o o 9 o o 9 o o 9
=1 =1 =1 S S =1
& « 9._

80
60
40
0

0

0

0
60
-80
80
60
40
0

0

0

0
-80
-80

100

N 39 ~

-100
100
-100
700
600
400
-400
-600
-700
700
600
400
-400
-600
-700
700
600
400
-400
-600
-700

UONJEIS|200Y Uo|EIS|200Y uopeIa|a00Y uoleIalRaY Uo|EIS|200Y

(=R (=] (=] (=]
(=31
OO
42

-6000

=)
S
S
b

10000
8000
6000
4000
2001

-2000

-4000

-6000

-8000

-10000

10000
8000
6000

-2000

-8000

-10000

50000

40000

30000

(=3
[=]
(=3
=1
~

10000
-10000
-20000
-30000
-40000
-50000

50000

40000

30000

20000

10000
-10000
-20000
-30000
-40000
-50000

50000

40000

30000

20000

10000
-10000
-20000
-30000
-40000
-50000

sar suar sar war suar

10

9.5

Time (seconds)

(e) Output of Filter X pe using the circular input signal ®¢.
Figure 6.20: Comparison of the hyperparameter groups A, B, C, D and FE, using the circular input signal ®¢.
107

6.2.3 Comments and Remarks

Throughout this section we have presented the Nutty Motion Filter, which uses a composition of various transfer
functions to allow an open-loop motion control system to smoothly interpolate and stabilize a given input signal
even when that signal is highly discontinuous. Various choices were made which however, should not fully enclose
this filter as a sealed solution. We have described the filter as various separate components, although one may
implement a more optimized version by combining them in a different way. In addition, various options may be
considered regarding e.g. the limiter function. While the tanh-based limiter became our choice, it was a balanced
decision, i.e., it provides steady, controllable results, with no tweaking required. For other particular applications, it
is important to emphasize that one may choose, explore and develop other types of limiter functions that better suite
their requirements.

A final and important remark that must not be left uncommented is on the use of limiters with mobile robots
that are operating in 2D trajectories. While it may seem obvious for a person with a strong background in robotics,
we want to clarify that in cases where the X and Y directions are controlled separately, they must typically be
limited together, in order to provide a limiter on the robot’s actual linear velocity (which is made up of x and
y) This means that given a 2D vector [, §], representing the velocities in both dimensions, one would have to
calculate the magnitude of the resulting linear velocity vector, apply the limiter to that resulting vector only, and then
proportionally saturate each of the two components, in order to limit both dimensions in a way that the resulting
linear velocity does not exceed the specified limit. The same principle would apply for any other degrees of freedom

that jointly operate to perform 2D motion (or even more).

6.3 ERIK - Expressive Robotics Inverse Kinematics

One common and basic social robot behaviour that we take as an example is face-tracking, which directs a robot’s
gazing towards the face of the human with whom it is interacting. For a simple robot, e.g., neck with two DoFs,
it is easy to implement face-tracking by extracting a vertical and horizontal angle from the system’s perception
components (e.g. camera, Microsoft Kinect). These two angular components can directly control the two individual
motors of the robot’s neck. However this is a very limited conception of face-tracking behaviour, and also a
very limited form of gaze control in general. Gazing behaviour can also be compound, by featuring not only
face-tracking, but also used deictically towards surrounding objects, and in conjunction with other static or motive
expressions (e.g. posture of engagement, nodding in agreement). Furthermore, one must consider that compound
gazing behaviour should also be adopted for use with complex embodiments that feature multi-DoF necks, such
as industrial manipulators, by considering the manipulator’s endpoint to take on the expressive role of being the
character’s head, i.e. taking inspiration on an animated snake.

Within the goal of this thesis, we are focusing on the possibility of animating a robot such as an expressive
manipulator, containing a chain of an arbitrary number of unidimensional degrees of freedom.

Animating such a robot within an interaction with humans would pose at least the requirements of having it able
to simultaneously be expressive, while tracking an orientation constraint (e.g. gaze target). This is not however, a
trivial problem. While it would be possible to control an expressive posture on the robot through Forward Kinematics

(FK), and while an inverse kinematics (IK) algorithm could separately be used to provide it with gaze-tracking

108

ability, the blending of both an expressive posture (FK) and an IK solution is not possible using a simple operator.

This becomes especially aggravated by the fact that a robot has physical constraints that limit its range of
movement, and that the final solution should be in joint-angle space (and not in position-coordinates as can be done
with techniques from CGI). Another burden is to ensure that our tools and algorithms would still be able to provide
solutions for any type of embodiment, and not just for the one we use.

This problem has posed as a hindrance to autonomous social robots’ ability to properly express their underlying
intention, when their actions are performed by an articulated structure. We therefore outline a solution to it by
creating an animation algorithm capable of blending FK and IK. Such animation algorithm would be solving for
two constraints which in most cases, are not simultaneously satisfiable: the expressive posture of the robot, i.e. the
configuration of angles for each degree-of-freedom (DoF) that results in a given posture; and the global orientation
of the endpoint node, i.e. the configuration of angles for each DoF such that the endpoint node faces towards a
given orientation (in world coordinates). Moreover, such algorithm must be fast in order to provide a responsive
interaction with humans, the resulting motion must seem smooth and continuous in order to exhibit naturalness, and
we also want it to be extensible and adaptable to other embodiments.

Given this challenge, we have defined the following features to be met by such algorithm:

» Simultaneously solve for a given posture configuration and endpoint orientation;
* Prioritize the endpoint orientation constraint by allowing for distortion of the expressive posture;

» Keep the distortion of the target expressive posture as minimal as possible. Our definition of minimal is that
although the expressive posture will not maintain its original form, it should be distorted in a way that its

intended expressive meaning still holds;
* Fast solving for real-time applications (e.g. \50 solutions per second on a common computer);
 Per-frame solving to allow continuous tracking of subjects (i.e. in contrast to full trajectory pre-planning);

» Provide continuous solutions, i.e. subsequent solutions should minimize jitter or broken motion in regards to

previous solutions;

* Support any configuration of kinematic chains, containing an arbitrary number of single-DoF nodes, rotating

each about an arbitrary axis with fixed angular limits;

* Be extensible for full-body solutions, i.e. solving multiple sub-chains for multiple endpoints (e.g. humanoid

embodiment with two individually controlled arms);

Our belief is that a solution to this problem will allow to create social robots that are more capable of conveying
their social intentions and overall motivation to human interactors, while performing other tasks such as gazing or
pointing.

This section presents and describes ERIK, a heuristic inverse kinematics technique that allows a virtual or
robotic character with an arbitrary articulated embodiment to convey and hold a given expressive posture while
facing a given direction during an interaction. It is able to provide many solutions per second using a standard
computer, allowing it to be used for interactive applications.

The effort to design expressive behaviours for interactive characters using ERIK is also minimal. Animators can

design single front-facing postures for any given embodiment, which are used as input to the algorithm, with no

109

pre-computing or offline training required for any new posture or embodiment. The algorithm is then able to take
that posture and warp it in real-time, so that a given end-point is facing any given orientation, while respecting the
embodiment’s kinematic constraints, and while attempting as best to hold the overall shape of the posture.

Furthermore, ERIK was also developed to support its use with robots. As such, its output consists of a list of
rotation angles, one for each joint, which can be used either in virtual or robotic applications. The solver computes
on a per-frame basis in order to easily fit into a typical animation cycle, i.e., it produces one full-body solution at a
time, and not a pre-planned motion trajectory.

Figure 6.21 illustrates the work-flow of a Nutty-ERIK system. ERIK can either be used as a component of an
Interactive Application such as a game, VR/AR application, or a robotic Al, or alternatively, it can be used as a
plug-in for an animation authoring tool. In the latter case, due to its real-time nature, it allows artists to creatively
explore the design of expressive postures for real robots in real-time, and directly in the real, physical embodiments.

This animator-inclusive workflow follows on the work initially proposed by [22, 121].

Interactive Application \

Target
Orientation
& Posture

Animation
Engine

ERIK

Users

/

Exp{essiue :
'ostures

v X

“‘-
ERIK Le®
(plug-in) Animate virtual
and

Animation Authoring Tool robotic characters

Animators | (e.g. Maya, Houdini, Blender...)

Figure 6.21: The ERIK workflow, illustrated as a particular version of the Nutty Pipeline . Animators can create
expressive postures using typical animation tools. Those expressive postures can be selected by an Al or character
controller in an Interactive Application to drive an animation engine which, through the use of ERIK, is able to
perform the selected posture towards a selected orientation (e.g. from a user-perception component). Alternatively
(dotted arrow), ERIK can also be used by a plug-in for the animation tool, to allow live authoring of postures on real
robots i.e., the animators are able to test the result of the postures in a given robot directly and in real-time.

ERIK can be used to create tools and character animation engines directed at animation artists, so that they can
take a stronger role in the development of autonomous, interactive, computer-animated characters, be them virtual
or robotic. By bringing the artists closer to the Al - or the Al closer to the artists - we expect ERIK to prove as a
strong technological contribution for the creation of better and more life-like interactive characters, in particular
within immersive and emergent applications such as the ones based on VR, AR and robotics.

In many cases, the algorithm will be solving for two constraints that are not simultaneously satisfiable: the
expressive posture of the character, i.e. the configuration of angles for each DoF that results in the given posture; and
the global orientation of the end-point node, i.e. the configuration of angles for each DoF such that the end-point node
faces towards a given orientation (in world coordinates). This means that depending on the character’s embodiment,

on the target posture, and on the target orientation, the resulting pose may either fully satisfy both goals, or fully

110

satisfy the orientation goal while partially satisfying the posture goal. Due to mechanical limitations, there will be
many cases in which it is physically impossibly to solve both goals. Given that ERIK aims at autonomous characters
that interact with humans, it will prefer a pose that complies with the given orientation target (where a human is
expected to be), while allowing the posture to fall short of the target expression. This design decision makes ERIK
most appropriate for situations in which the characters perform a merely expressive role, where the control of its
embodiment is not crucial for safety or successful completion of tasks, such as robotic manipulation of real objects.

From our evaluation, we found that ERIK does in fact solve most cases successfully for both the posture and
orientation goals, as long as the embodiment contains enough DoFs to achieve it. ERIK is an iterative algorithm for
expressive kinematics that was developed with articulated structures of 1-DoF joints in mind, such as real robots,
and in particular, robotic manipulators. It provides a joint model that allows to use techniques initially developed
for CGI and not for robotics, such as FABRIK or other IK techniques, which solve for Cartesian (position-based)
solutions, instead of angle-based solutions as is commonly used in robotics.

Our algorithm was initially developed towards the problem of expressive gazing, in which a given embodiment,
composed of an articulated kinematics chain, is required to orient its end-point towards a target, while also providing
expressive control over its posture using expert body knowledge provided by character animators.

Although technically an iterative algorithm, we may also describe ERIK as a multi-phase super-iterative
algorithm given that for each set of goals, it solves them iteratively, while using other iterative techniques within
each of its iterations. In particular within each iteration it may solve small steps using the popular CCD technique,
and will use the custom BWCD technique, which is an adaptation of the CCD algorithm, tailored to simplify some

of the steps within ERIK.

6.3.1 From FABRIK to Expressive Robots

The major portion of the algorithm was inspired by the FABRIK technique [89]. While CCD is commonly used in
isolation to solve the IK problem required for a given end-point to face a given direction, its solutions suffer from
discontinuities and un-natural poses. In this aspect, FABRIK performs significantly better, which makes it more
appropriate to be used for expressive motion. However, by operating on the Cartesian level, it cannot ensure reliable
orientation constraints. Given a set of parallel, 1-DoF joints as we commonly find in robots, it frequently runs into
indeterminations, given that a Cartesian representation of a skeleton can not properly represent induced parallel
rotations (i.e., twist). As the authors point out, that results in deadlock situations [89]. They propose that deadlocks
can be detected by checking if the distance between the target and the end-point is becoming smaller on each
iteration. If not, a deadlock situation is detected. We have imported this concept into ERIK, although we have called
these the Nonconvergence cases, for which we provide additional Nonconvergence Tricks. Our dealing if the
Nonconvergence cases is expressly different, given that under constraints, we must allow the end-point orientation
to temporarily move away from the target in some situations, while it is e.g. twisting its root joint to readjust the
whole chain to allow reaching the goal, which makes the Nonconvergence detection less trivial. Furthermore, the
Tricks we apply must consider the fact that we expect to hold the given expressive target posture as best as possible,
while in FABRIK, one of the proposed solutions when the target is detected to be out of reach, is solely to place
the whole chain in a straight line (which is OK if we do not care for the resulting posture). These limitations have

restricted FABRIK’s use for robotics, as it was especially formulated for motion-capture of virtual humans, and on

111

IK problems for position-based targets. Still, FABRIK provides various benefits, such as supporting full-body IK
i.e., multiple end-points, non-leaf end-points, closed loops, and prismatic (i.e., sliding) joints. Therefore, we chose
FABRIK as the starting point for ERIK so that in the future we may have the chance to replicate and adopt those

same features.

6.3.2 BWCD: Backward Coordinate Descent

The BWCD is an IK technique that was specifically created to solve some of the intermediate steps within ERIK.
Its execution is similar to CCD’s except that execution starts at the root of the chain instead of at the end-point.
Therefore the bulk of the warping introduced by BWCD will be concentrated at the bottom of the chain, while CCD
tens to introduce it at the top of the chain. The formulation of BWCD was necessary to allow warping postures
towards an orientation goal, with preference for having such warping at the root of the chain. That is because by
concentrating most of the warping at the root, we expect to maintain more of the shape of the posture through the
rest of the chain, up to the tip. Because the warping occurs at the root, which is typically less constrained (such as in
a turret, or a pan-tilt mount), BWCD can return an acceptable solution in a small number of iterations (e.g. <5).

Therefore, while being an iterative algorithm, it is fast enough to be used as an internal step within ERIK.

Within ERIK, BWCD is used to operate both on Postures and on Solutions. The Posture version solves it in
Cartesian space and does not enforce joint rotation limits. The Solution version runs in angular space and enforces

joint rotation limits.

6.3.3 The ERIK Pipeline

Figure 6.22 shows the main components of ERIK: the inputs Target Orientation and Posture, the Joint Model,

the Warp Posture phase, the Solve for Goals phase and the Motion Filter.

ERIK takes in a Target Orientation, along with a Target Posture, that are to be achieved by the given skeleton,
which is the representation of the embodiment’s structure, depicted as the Joint Model. The Target Posture is first
naively warped using BWCD, so that its end-point is pointing towards the target orientation. This step, however,
breaks the kinematic constraints. Therefore ERIK moves on to the FABRIK-inspired iterative portion that starts by
running a Forward Phase, and a Backward Phase (inspired by FABRIK’s own Forward and Backward phases).
After the Backward phase, the candidate solution exhibits a shape as close as possible to the given Target Posture,
and respects all kinematic constraints, but its end-point orientation may not match the given Target Orientation.
Upon testing the candidate solution, if it is within the acceptable parameters, then the solution is returned. Otherwise,
the BWCD algorithm is used to orient the solution’s end-point towards the given Target Orientation. This step
will likely cause a slight deformation to the intended posture. If after this step, the new candidate solution is still not
acceptable, then ERIK will proceed with a new iteration, starting from the current candidate solution. Before doing
so however, it may perform some Noncovergence Tricks, in case the algorithm detects that the candidate solution

errors are not properly minimizing.

112

Joint Model
[Jointg,., Joint,, ..., Joint,]

Solve for Goals Q

» Forward

2

Backward

Target
Orientation Warp Posture

(quaternion)

— BWCbF >

Target

Posture
(angles)

Nonconvergence
Tricks

Motion
Filter

v

Solution
(angles)

Figure 6.22: ERIK Pipeline. The given Target Posture and Orientation are first warped using BWCD, so that the
posture’s end-point is aiming towards the Target Orientation, without enforcing joint limits. The result feeds the
first iteration of the Iterative portion, which, through various phases on each iteration, returns the final solution. The
Joint Model containing the skeletal information and auxiliary operations. The final solution runs through a motion
filter to ensure smooth, continuous output.

113

Nonconvergence Tricks

Upon detection of a non-converging execution, we attempt two approaches, which we call tricks, to attempt to get
the solution to converge. The first attempt is to add a small offset to the target orientation. It may be the case that
the specific target orientation may not be mechanically achievable, and that the algorithm will deadlock trying to
achieve it. In that case we attempt to perform a random disturbance of a pre-specified magnitude Apjsurbances ON the

Target Orientation, and proceed to the next iteration using the new target.

If the execution comes again to a non-convergence detection, then we attempt to run the CCD technique, using
the current intermediate solution as the initial state. This CCD step will likely disturb the expected resulting posture,
but will ensure that the end-point is pointing towards the target as best as possible. Given that we take the current

solution as the initial state, it is, however expected that the introduced posture disturbance is minimal.

If still this CCD step was unable to provide an acceptable solution, then it is likely that the intermediate solution
has become locked due to joint constraints, and that CCD will not be able to solve it. In that case, and only in that
final case, will we disregard the target posture, and therefore run the CCD technique again, but starting from the

zZero-pose.

6.3.4 The ERIK Joint Model and LALUT

In order to allow the use of a FABRIK-based approach with robot-oriented calculus, we started by developing the

ERIK Joint Model (EJM) that contains all the required information and operations.

Figure 6.23 shows the unit-sphere EJM space of a joint, where the Parent segment is connected to the link’s

Segi%ent, which can rotate about a RotatiBnAxis, within the angular limits of [Ming, Maxy).

Vector 7 is a target vector, which specifies the direction where we wish to compute a solution for the joint. Note
that the Parent was purposely misplaced so that it ends at the origin, to help to visualize this representation as a
segment hierarchy, and that all the vectors used are normalized to unit length. Note also that we suggest always
considering that the Parent is aligned with the i/ of the child’s local space, although other conventions can be used.

The coordinate axes on the top-right corner of Figure 6.23 should help to clarify the convention in case of any doubt.

The goal of the EJM is to provide answers to the following question: What angular rotation do I need to apply
to the local joint, if I know the joint’s rotation limits, and if I know that the Parent joint is a Twister, along with how

much it can twist?

Taking figure 6.23 as example, and note the segment S, In order to point the Seg;aent to t, the EJM provides
the rotation of Qtwing ON Segr%ent, resulting in g , followed by SByyis On Parent. This would be because the segment
wound not achieve ¢ through a positive rotation due to its rotational limit Max,. Therefore it needs to locally rotate

away from the target, and then rely on its parent’s Twist capabilities to finally turn to the right direction.

The cwing value is calculated using a pre-computed look-up table which we call the LALUT. First, the target

direction £ is turned into a single decimal number we call a latitude A, which is calculated from Equation 6.9.

114

%
Segment

N
l <
x|

aswing

%

= . Ming
Rotation AXxis

parentMin®

Btwist

_)
Parent

Figure 6.23: The ERIK Joint Model. A joint is defined as having its origin at the tip of its Parent segment, and in
this coordinate frame, to contain its own Segment which can rotate about a given RotationAxis, within an angle that
lies in the range {Mingy, Maxy }. In order to achieve a given target ¢, which is defined in its own local space, it can
perform a local rotation of cvying, bringing its segment to S’, and then have its parent joint perform a twist of Byyis
in case the parent is a twister joint.

A =o)L
o(t) = sign(f- POA) (6.9)

POA=RxP (only computed once)

This A is then used to query the LALUT, which therefore stands for LAtitude Look-Up Table. Additionally some

auxiliary vectors are computed only once on joint initialization following Equations 6.10

RxS if=(R|S)
OA={ RxY elseif|§ - X|=1
Rx Z ,else
Lo (6.10)
RxP it=(R| P)
POA={ X elselfﬁ X=0
Z ,else

Figure 6.24 illustrates the concept of latitude. Given one of the target vectors shown, the latitude will be a number
between zero and one, which is inspired on the concept of geographic latitude. The south pole corresponds to zero
(0.00), while the north pole corresponds to one (1.00). The unit sphere is also split in two vertical hemispheres
using the plane defined by the vectors RotationAxis and Parent. Given a target vector £, the hemisphere it lays in is

is used to define the sign of the latitude (positive or negative).

115

mAzl.oo

Negative Positive
Latitude 5 Latitude
Parent [
A=0.60

Rotatign Axis
e

A=0.25

&_/’/

v
, A=0.00

Figure 6.24: The latitude coordinate system. Given a target, represented by the yellow arrows, the corresponding
latitude A is calculated following Equation 6.9. A target pointing at the south pole has a A of zero (0.00), while one
pointing at the north pole has a A of one (1.00). The A will be positive or negative depending on if it lies in the right
or left hemisphere, which is defined by the plane RotationAxis x Parent.

The Latitude Look-Up Table

The LALUT serves as a look-up table (LUT), which consists of an indexed array, stored in memory, for which we
can associate a value y to an index z. For intermediate values of x that are not present in the table, it should be able
to compute the corresponding values of y by interpolation. It is computed only once, on initialization, given that the
kinematics of a joint are not expected to change in run-time (i.e., the specific vectors Farent, Seg;%ent, RotationAxis
of the system remain the same throughout execution).

This table is computed by iterating a variable a from aupin t0 umax, in small steps (e.g. ﬁ;romd). The size of
the step can be adjusted depending on the needs, with a smaller step requiring linearly more initialization time,
but providing higher accuracy. In any case the total execution time should be less than a few seconds on a typical
computer.

On each iteration, we rotate Segi%ent using a quaternion Qusiep = AxisAngle(Rotati(ﬂ)nAxis7 a), which produces
a new vector «. We then store the value of a in the LALUT, indexed by its latitude A\(@). Conceptually, this means
that the LALUT stores, for a given latitude, the local angle that resulted in it.

Because the LALUT is stored for two hemispheres, it actually contains a positive LUT and a negative LUT. An
entry is placed in either the positive one or the negative one depending on the sign of o (). Later, for retrieval, the
same procedure is followed: Given a target ¢, a latitude A and a sign ¢ are calculated from Equation 6.9. If ¢ is

negative then the negative LUT is queried for A, otherwise the positive one is queried.

6.3.5 ERIK Parameters and Model Specification

The algorithm relies on a set of Parameters (II) used to define the execution goals, which are expected to change
frequently (even between each solution), along with a set of Hyperparameters (A) which should remain unchanged

throughout the execution, and are used to configure the algorithm execution. Table 6.2 outlines the main Parameters

116

and Hyperparameters required for ERIK, along with the symbol by which they shall be represented throughout the

document, and especially within Appendix A.1 (Algorithmic Specification).

Table 6.2: Description of Parameters and Hyperparameters of ERIK.

Symbol Meaning
II ERIK Parameters
A ERIK Hyperparameters
I, 11 Target Orientation, Target Direction
11y Target Posture
Ie,_, Previous Solution
Asic Skeleton Information (EJM)
Asgy, i*" joint counting from the root!’
NDoFs Number of DoFs of the Skeleton
Ay Error Function

AMaxERIKIterations
AMaxCCDIlerations
Afoo

Ag

Zbar

g

Maximum iteration count

Maximum iteration count for CCD (and BWCD)
Value of Hyperparameter foo

Extension bar is active

Solution’s error value

Table 6.3: List of joint information, given a joint k of a Solution (©},), a Posture (¥y), or a Skeleton (Sky). Let
represent either a Solution or a Posture.

Symbol Meaning
Wgg, ©pg A Posture or Solution’s End-Effector joint.
k:; Joint’s (child) Segment.
k E A Joint’s Rotation Axis.
kg A Joint’s Orthogonal Rotation Axis.
k p?) A Joint’s Parent-Orthogonal Rotation Axis.
Dy, World-Position of joint.
D, Local angle of joint.
Dy, World-Frame (basis) of joint (Quaternion).
Dy, Local-Frame orientation transform (Quaternion).
Dy, World-frame orientation transform (Quaternion).
o 4 Direction where the joint segment is pointing at (unit vector).

Besides the Parameters and Hyperparameters, ERIK requires the concept and model of Solutions (©), Postures
(¥) and Links (K). The Solution object is used both for intermediate and candidate solutions, used internally during
the execution of ERIK, and also to represent initial and final solutions provided to and by the algorithm. The Posture
object is similar to the Solution one, except that it is used to represent a target pose, which may be represented either
based on a set of angles, or a set of positions for each joint, and which may or may not comply with the mechanical
limits of the Skeleton. In case of Solutions, they contain kinematic information that adheres to the joints’ kinematic
limits.

Additionally, candidate and final solutions contain an error value ©. which represents the result of the error
function A4(©). The Skeleton information object contains the set of Links, along with information such as which is
the root or end-point joints of the chain.

Both Solutions and Postures contain joint information represented in a similar way. The joint fields used by both

are listed in Table 6.3, while some additional algebraic definitions are listed in Table 6.4. The computation of some

117

of the fields from Table 6.3 is explained in Equations 6.11a—6.11c. Let us clarify that the orientation transforms
@, and &, represent the orientation to which the joint’s segment is facing, after applying its own local rotation.

Also note that an alternative to Equation 6.11c¢ would be to take the i axis of ®y,,’s corresponding matrix.

q)kL = QAxisAngle(k};Av q)k'g) (6.11a)
Bpy = Dig - Py, (6.11b)
(I);d = QAxisAngle(Y/; q>k9) (6.11¢)

Table 6.4: Definition of mathematical symbols used in the algorithms.

Symbol Meaning

Qo,Q, Scalar and Vector parts of quaternion ()
Qum Rotation Matrix that corresponds to quaternion Q).
Qr Axis k of Qs rotation matrix Q s, k € {z,y, 2z} (simplification of @y,).
XY, Z Unit-vectors in the X, Y or Z directions.

6.3.6 The Error Function

To measure the quality of the solutions produced by ERIK, we established two concurrent error measures, €orientation
and eposure- These are concurrent measures because in most cases, minimizing one results in not minimizing the
other. Through successive iterations, the algorithm attempts to minimize the error function A4 (Equation 6.12),
which calculates a weighted sum of the two measures. The error threshold Aqhesholde Specifies when the result of
the error function is small enough to be acceptable (for which it can successfully terminate and return the computed
solution). In all cases, any value that measures error lies within the interval [0.0, 1.0]. The orientation error function

QDOrientation Calculates the €gpienation fOr a given solution, while similarly, ¢poswre calculates its eposuyre -

A¢(@7 T, \If, A) = AOrientationErrorWeighl : (bOriemalion(@EEg y Ty A) + APOstureErrorWeight : ¢Posture(®7 \1}7 A) (612)

These two error functions are defined in equations 6.13 and 6.14, and further specified in the appendix in
Algorithms 5 and 6. The posture error function @posre measures how different the posture of a solution is, in shape,
from the target one. It does so by measuring the local angular deviation between each non-twister solved joint, and
target joint, and is designed to punish more for deviations closer to the end-point than closer to the root, which
supports our preference.

In equations 6.14 and 6.15, a is a shortcut for the aggravation factor Agroraggravation-

17 Thus the root joint is Ask, » the end-effector is Ask » and the Superpoint (Section 6.3.8) will be Asy 41

118

min(Z(T7 w)7 Z(T7 QAA(ROtVQ(Y7 w)’ ﬂ—) : w))) Zf AESymmclricEndpoinl

@Orientation (w7 T, A) =
Z(1,w) , otherwise (6.13)

Z(rw) = min(|7 —j%, IT+w])

Npors) 1
1 0 ,if IsTwister(Ask,)
Prosture (0, ¥, A) = Aoe o ; 1Y (0, 0) 147(8,1)
PoswreNorm 57 | o' - |(1 — =) — (1 — ——==2)| | otherwise
St |- 1Py, = Pyl i1 @19

T(P,i) =
P — P(i—l),)” . HP(iH)p — P, || otherwise

The Hyperparameter AEmrAggravation (used in the Equations 6.14-6.15 as «) defines how worse the punishment
becomes, as the function calculates deviations closer to the end-point. A value of 1.0 would mean that the punishment
is the same across the links. A value of 2.0 means that a given deviation amount at one link would result in twice
the error value, one level up the kinematic chain. We can see that the resulting value of ¢pogure is divided by the
ApostureNorm» Which reduces the final sum to a value in the interval [0.0, 1.0]. This hyperparameter is calculated once

on the skeleton’s initialization and given by Equation 6.15.

Npors . .
0 ,if IsTwister(Agy,)
ApostureNorm = E . . (6.15)
i=1 o' otherwise

Depending on the target application, and the embodiment used, one can use different values for the error
measure weights, and for the error threshold. We share, as an example, that for a 5-link robotic manipulator
aimed at entertainment applications, where expressivity and responsiveness is more important than precision, we
achieved good results using an error threshold of 0.04, with a weight of 1.0 for AorientationErrweight and 0.2 for
AposwureErweight- As such, we took these values as a reference when evaluating the algorithm as we will report further

in the appropriate section of the document (Section 6.3.10).

6.3.7 The Nutty Motion Filter

The final component of the pipeline is the Nutty Motion Filter, which we refer to as the NMF and has been
extensively described in Section 6.2. This piece’s function is to interpolate successive ERIK solutions, to ensure
that the final produced movement is smooth and continuous. Furthermore, it can shape the motion to make it
appropriate for use with robots.

The NMF allows to define limits for the velocity, acceleration and jerk'8 of the signal. Additionally it includes a
set of tweaking parameters that can be creatively explored to provide different characteristics to the motion, such as
allowing it to respond fast, as in a light character, or respond very slowly and with a lot of inertia, as in a heavy

character.

18 Jerk is commonly used in robotics. It is the derivative of the acceleration. Think of it as the speed at which the acceleration changes.

119

The motion filter is calculated individually for each joint, at the end of each frame in the animation engine’s
animation cycle, which is not necessarily synchronized (and should not be) with the ERIK solver engine. We
recommend not attaching these given that the ERIK cycle may have inconsistent frame times and drop to a lower

rate than is expected in the animation cycle.

The output of the NMF on each frame is given by the function X (z(t), (i), s), where z(¢) : R{ — [Puin, Prax]
is the motion signal history, i.e., the previous positions that were output from the filter. The parameters Py, and
Prax represent the minimum and maximum values respectively (e.g. angular limits). Note that each joint may define
its own limits and motion parameters for the NMF. x(0) corresponds to the initial position of the joint and must be
initially specified. The function ¢(7) : Ny — R (shortened to t;) represents the time at each sample 7, such that
0 <ty <t;andt; —t;_1 = At, where At is a fixed time-step, calculated from the animation output rate R,
such that At = %. Note that from this definition, ¢ refers to the current sample, and therefore the current time is

always represented by ¢;, while the time of the last sample is ¢;_; and so on.

Finally, the set-point s is the new target position, and is used to calculate the induced velocity &(t;). With this
consideration, x(t;) is used to represent the output that will be computed of the filter at the current time (not in the

history yet), while s therefore represents the input. As such, 4(¢;) must be calculated from s instead of x(t;).

Equation 6.16 contains the explicit definition of the NMF equations. Within them we can find the various motion

parameters, which we follow to explain.

The 8 parameter controls the exponent of the position-limiter de-acceleration, allowing to control how close
to the angular limit of the joint the output is allowed to get before being saturated. As /3 increases, the saturation
becomes more similar to a hard clamping function. The use of a soft limiter allows the output filter to avoid
overshooting any joint beyond its physical limits, given that in most cases, overshooting at the software’s output

level would result in a hard break at the hardware level. The default value for 3 is 1.

The {0, p} parameters both represent smoothness and responsiveness respectively, and allow to tweak the filter,
changing how quickly it responds and how much it is allowed to oscillate. We call these the character parameters,
as different configurations for them will shape the motion differently. As such we argue that they can be used to
model different character traits, even when the same physical limits are enforced. The smoothness parameter o will
ease out the oscillations. However, depending on other filter parameters such as the physical limits, fully easing out
might become too slow and make the motion seem too muddy and flat. That is where the responsiveness parameter
p comes in, which allows to precipitate the easing out, so that it may still be smooth, but faster, and thus, more

responsive.

Please refer to Section 6.2 for more details and examples on the Nutty Motion Filter and the use of its parameters.

120

x(z,t;) = x(ti—1) + A(¥(z, t;), velocity_limit)
§(z,ti) — (tiz1)

(x,t;) = (ti—1) + A(, acceleration_limit)

At
v-H(w)—a(t;—1) .
vHO)20t) _ (g,
E(m,t;) = &(ti1) + A(At A7 B(ti-1) , jerk_limit)
v = Q(x(tz)a x(ti—l)v Pmaxa Pmin, 6)
amalte) Vif k=i
i(tk) =
z(tr)—2(tk—1) :
ekl k=L otherwise
At (6.16)
|U‘ l1—0o
= — . _ — <og< <
H(v) <tanh<<1_p) r)+1),0<o<1,0<p<1
k
Mz, k) == - tanh(a:/i)

2
- (1— <IPQ'X>) if(x>a&i>0)](r<a&i<0)
Q(-jjvxapmampmimﬁ) =

otherwise

N —— N e —_——
\’%3'

Qe
I
]
”
=
=

6.3.8 The Superpoint

In order for some of the calculations to work on the end-point link, we created the concept of the Superpoint. This
is a fake, 0-DoF joint, used within Postures, that extends the end-point’s segment. It allows the End-point to be
treated as if it had a child link with 0-DoF. Whenever the Posture’s data for the End-point is changed, the data for
the Superpoint is also updated, using the rules in Equation 6.17. Also note, by the definitions in Table 6.2 that the

Superpoint may be referred to either as ¥ p g, Of Asky ;-

VB Eeyg, =0 Let U be the posture and EE the Endpoint
\IIEEChildQ =VYgg, (6.17)

\I/EEChildp = \IIEEQ + Rotate(EEg, Veg,)
6.3.9 ERIK Extensions

Not all embodiments and application pose the same requirements. As such, ERIK was designed with the idea of
extensions (Z) in mind. Think of extensions as options that you may want to have activated or not, which may
change the way the algorithm runs, and thus can result on better outcomes for a given situation (while possibly
providing worse outcomes, for a different situation, with different criteria). In that sense, Extensions fall in the
category of Hyperparameters, and are therefore contained within those. The extensions we have designed and
included in the algorithm on this paper were all found to yield better results given the purpose we define (i.e.,

entertainment). If your purpose or criteria is different, there is an option to disable such extensions, to modify them,

121

or even to create new ones. The currently included extensions are:

ESymmetricEndpoint Allows the algorithm to flip the end-point upside down. This is useful if the end-point is
symmetric, and can be used both ways. By using such a design, and activating this extensions, the possible

solution space doubles, and therefore allows the algorithm to properly solve in many more cases.

EavoidEdges Instructs the algorithm to avoid positioning joints exactly on its angular limits. In cases where some
minor deviation from the goals is accepted, this extensions helps to avoid dead-lock situation when the joint

limits are equivalent to singularity-prone angles (such as 7).

ZNonConvOftsetTrick Allows ERIK to attempt the Non-converging Offset Trick when a non-converging execution is
detected. This trick applies a small, random orientational offset to the target orientation in cases where the
execution has become non-converging. It results in an increase on the amount of cases where the algorithm is
able to converge, as long as a minor deviation from the goals is accepted. The deviation applied is defined by

hyperparameter Apisturbanced -

ZNonConvCcDTrick Allows ERIK to run the CCD algorithm on a non-converging solution, after the Non-converging
Offset Trick failed to bring the execution into a converging state. It typically results in achieving the orientation
goal esier, while allowing the posture goal to become more disrupted (as expected through the direct use of

CCD).

6.3.10 Evaluation

Before claiming on the quality and success of ERIK, we are required to run extensive evaluation procedures. Given
that the algorithm aims at being used with any embodiment and expressive pose created by animators, we did
not want to access if the resulting solutions were able to solve particular use cases, as those should be tailored
creatively by such animators in the future. Instead, we realized that we wanted to assure that the algorithm would be
able to fulfill an animator’s intentions while authoring expressive postures for use with ERIK. Therefore, given an
expressive posture, we wanted to test how well the algorithm was able to hold its shape, while orienting its endpoint
towards various different target orientations. At the same time, we were concerned with how well the resulting
solution effectively aimed at the given target orientation, regardless of the resulting expression. This is because, for
interactive, real-work situations, we consider it particularly important to get the aiming right, so that the character is
believable, and is able to provide an immersive experience for the user. The expressivity of any particular posture is
not, in fact, evaluated. Instead, the evaluation focused on what can be regarded as a meta-expressivity, i.e., given
any posture, which an animator would have thought to be appropriately expressive for some purpose, we measure
how well the algorithm is able to reach a shape that is similar to the one given by that posture, and that capability is
what is evaluated as the expressive goal.

With the purpose of evaluating how well ERIK solves both the orientational goals and the expressive goals, we
performed what can be dubbed as a brute-force evaluation procedure. This procedure consisted of generating many
different expressive postures, and testing how well ERIK is able to solve them for a large set of different orientation
targets. All this was done for several different embodiments. It is impossible to cover every possible case through

such approach. However we consider that the tested cases are a sufficient reflection of how the algorithm performs

122

in general, and are representative of both 1) the space of different expressive postures that any animator would
possibly produce; and 2) the space of different orientations to which the character might possibly have to face.
Additionally we compared ERIK against an existing technique. In this case we followed the description by
Baerlocher on how to solved an IK problem for multiple tasks [73] based on the DLS method. Taking the example
of a two-priority problem, the first task, with higher priority, would be the orientation constraint, while the secondary
task, of lower priority, would be the postural constraint. The technique was evaluated in the same way we tested

ERIK with multiple embodiments, and the results were further included in the same analysis.

Error Measures

Through preliminary experimentations, we decided to established a weight of 1.0 for €gyientation and 0.2 for €posture»
along with an error threshold Apeshoige Of 0.04. The use of these weights states that it is more important to get
the orientation goal solved than the expressive posture one. This is because we prefer that the resulting solution is
properly aiming at the target orientation, and, because we are aiming at expressive applications, we tolerate that the
posture may fall slightly out of shape, as long as it is still within an acceptable amount of disfigurement.

As to the error threshold, while it should be adapted to each embodiment, we found 0.04 to be a decent tolerance
to demonstrate and compare the results among different embodiments. In a real-world application, we would have

tweaked a different error tolerance for each of the different skeletons.

Evaluation Embodiments

In order to see how the algorithm performed for embodiments with various amounts of DoFs, we established 7
different test skeletons, which are presented in Table 6.5.

It is important to note that we have included skeletons with a low number of DoFs in order to validate that
the algorithm behaves as expected, even in such highly constrained situations. Our hypothesis here is that these
low-DoF skeletons will yield very poor results, and that by adding more DoFs, or configuring them in different ways
and with different angular limits, we can augment the expressive capabilities of the expressive character, which

should be proven by yielding better results in the same type of evaluation.

123

Table 6.5: Definition of test-skeletons used in the evaluation procedure. In the figures, green nodes represent a
Y -oriented rotation axis, while a red one is oriented with X and blue with Z.

Dqu and
Skeleton rostggggnagéls Angular Range Ilustration
(root to endpoint)
A 3 links -3, 5] 5
Y-X-Y (all links) '
s
B 4 links [—, 7]
Y-X-Z-Y (all links) e
A
c 5 links -3, 5] '
Y-X-X-Z-Y (all links) 9
D 5 links [—, 7]
Y-X-Z-X-Y (all links) o S
. 5 links -2, %] a
Y-X-Z-X-Y (all links)
p ¢
s T ”
E 6 links 5, 3] |
Y-X-X-Z-X-Y (all links) o
9 ~
G 8 links 5, 5])
Y-X-Z-X-Y-X-Z-Y (all links) é
9

Procedure

Each skeleton was used to test ERIK in various different target postures and target orientations. The target postures
were generated by sweeping the angular range of each joint as long as it is not a root twist-joint, or an endpoint
twist-joint, with a given resolution, from its miny to its maxg, and combining them to create a large set of postures.
Based on our convention, the twist-joints are the ones whose rotation axis is aligned with Y. In fact, the full set of
skeletons has twist-joints both as root and as endpoints, which means that for each skeleton, all joints except these
two were swept to generate the target postures. The reason why we exclude these two are that they do not change

the actual shape of the posture, and including them would dramatically increase the simulation space.

124

Y axis

T

Figure 6.26: The postural simulation space for skeleton C, illustrating 3789 target postures in three different views.

In Figure 6.25 we can see examples of different target postures generated for Skeleton C, with 5 links. The
whole postural simulation space for the same skeleton is illustrated in Figure 6.26, where we see each of the 3789
generated postures overlapped. Note that the simulation space contains no rotation on the root joint, as it would

merely revolve the posture around the vertical Y axis, and thus would not change the posture’s actual shape.

Similarly, for the target orientations, we wanted to test the most various orientations in all different directions
around the character. For that we swept a horizontal angle «,, a vertical angle «,,, and a twist angle 4, all in
the range {—, 7}. The sets of three angles were then used to generate a large number of target orientations (as
quaternions) through the Yaw-Pitch-Roll composition method. It may seem that for «,,, sweeping in the range
{—7%, 5} would have been enough; however extending the range to { —, 7} introduces additional target orientations
in which the target orientation is defined upside-down. We wanted to include such cases in the evaluation, to ensure
that the algorithm was also numerically capable of dealing with them. As a result, for each of the generated postures
of each skeleton, we took a point-cloud centered on the robot, each point representing a target orientation (including
the roll component). This method allowed us to run the algorithm on a large amount of different parameters, while

also taking extra care to ensure that potential failure points, such as angles set to £, and orientations aligned with

any of the coordinate axes, were guaranteed to be included.

125

Figure 6.27 shows the orientational simulation space as a point-cloud with 7609 points, which was used to run
simulations for each posture or each skeleton. Each point illustrates a polar and azimuthal orientation angle, along
with a twist that is given by the radial distance from the center. Therefore variously twisted orientation quaternions
are tested in the same direction. Both positive and negative twist angles are tested - in this representation, the
zero-twist orientations are represented by the points that lie at the center of the point-cloud radius, while positive

ones increase towards the exterior, and negative ones towards the interior.

Z axis

Figure 6.27: Illustration of a point cloud corresponding to 7609 test samples, each representing a different quaternion
to be used as the target orientation. Each point represents a polar and azimuthal orientation angle, along with a twist
that is given by its radial distance. The colors of the points are modulated from the twist angle (red are negative,
blue is zero, green are positive). Please note that the apparent existence of blue or even green dots at the center is an
illusion - they are in fact part of target directions that are roughly aligned with the viewing direction.

Comparison with the two-priority DLS

In order to compare ERIK against another existing technique, we chose to use the two-task-priority DLS as described
by Baerlocher [73], using Maciejewski’s damping factor [77] and the SVD method. These techniques have already
been reviewed in Section 3.2.1, and are reiterated in Equation 6.18.

This technique posed as the most appropriate to provide a comparison to ERIK, as it allows us to define two
tasks: the orientation task characterized by J; Af = €7, with a high priority, and the postural task JoAf = €3 with
a lower priority. Both J; and €7 are calculated as they would usually be for an orientation-constraint task. The
secondary task is meant to keep the joint angles as close as possible to a given target posture W. Therefore we
calculate €3, = ¥ — (§+ Ax), having Az = J{r M €1, i.e., the current solution to the primary task. We recall also
that §'is the initial joint configuration. Therefore the error vector for the secondary task represents the error between
the target posture and the posture that results from solving the primary task. As the secondary task aims at solving
towards a given posture, its Jacobian matrix Jo should correspond to the Identity matrix /™, where n is the number
of joints. We add just one correction to it, by setting the value for the 1% and nt" joint to zero in case that joint is a

twist joint, given that as in ERIK, those do not change the resulting posture’s overall shape.

126

Link 0 « a d
(Joint Angle) (Twist Angle) (Link Length) (Joint Offset)

1 0 5 0 10

2 5 0 30 0

3 0 5 30 0

4 3 3 0 0

5 5 0 0 40

Table 6.6: Denavit-Hartenberg parameters (classic) used to run the simulations of DLS on Skeleton C.

A =T + (aPy) (63 — Jodf 6l

O

i=1

Pygy=1-JJ

. (6.18)
% if opin < %
Ae = O'min(d - Umin) lf% < Omin < d
0 if Omin > d
€]l
d =l
bmax

The simulations using DLS were ran using Skeleton C, for which each joint can rotate only 90° to each side,
therefore making it much more difficult to face orientations that are behind the robot. Using ERIK, that was not a
problem given that we have the extension ZsymmetricEndpoint: Which allows the end-effector to be used upside-down.
While this feature is still used within DLS at the error function level, it is not properly considered by the actual
algorithm. We therefore also apply a correction to the orientation target in order to keep its up-side oriented in a way
that it is reachable by the test skeleton given its joint limits. This correction was the only one that we ever added
to enhance the results for a particular skeleton or technique, and in fact, is used only to enhance the results of the
technique to which we are comparing ERIK, for more realistic results. Initially we considered the results of DLS
too bad, and therefore the comparison (while optimistic for ERIK) was considered inappropriate.

The correction is made by flipping the target orientation’s quaternion upside-down (i.e., performing a rotation
of 7 about the unit Z vector) in specific regions of the target space, so that we guarantee that the target’s up-side
is always directed to facilitate the result of DLS using Skeleton C, i.e., when the target is facing forward then its
Y-axis will always be facing down; when the target is facing backward, then its Y-axis will always be facing up.
Therefore the target is never an orientation that is mechanically unachievable a priori.

The classic Denavit-Hartenberg parameters used to model Skeleton C are presented in Table 6.6.

Finally, because the DLS technique outcome is very dependent on the maximum number of iterations execution, we

also ran several trials with the technique using 100, 200, 400 maximum iterations. Each will be referred to as e.g.

DLS100 or DLS400. Whenever we refer solely to DLS, we will be referring to the best version of it (DLS400).
We started by running a set of simulations using DLS100_nopost, which is DLS100 without the homogeneous

solution, i.e., without the second part of the equation which attempts to solve for the target posture using the primary

127

Jacobian’s null space. The goal with these simulations was to assess how well the DLS implementation was able to
solve solely for orientation targets using Skeleton C, which is highly prone to singularities. Although the technique
we follow is stated to be free of algorithmic singularities, the parametrization of the skeleton may also introduce
kinematic singularities (e.g. gimbal lock). In fact, upon running the simulation using DLS100_nopost, we found
that there were many target orientations for which the algorithm became stuck yielding a very high orientation error,
which we attribute to such type of singularities. In order not to impair the results of the DLS simulations when
compared to ERIK (which does not suffer from such singularities), we further used this simulation to filter the DLS
results in order to remove all the samples for which the DLS100_nopost version yielded an orientation error above
3x the specified threshold, thus excluding from the comparison exceptionally bad results that were not due to the
posture constraint, but to inappropriate handling of kinematic singularities. As such, in the comparison of ERIK and
the DLS variants (Section 6.3.10) the results from the DLS simulations presented are the results of applying such
filter.

Figure 6.28 compares the resulting orientation error histograms and normal distribution plots for ERIK and the
filtered DLS100_nopost on Skeleton C. Note that the data from ERIK actually resulted of the full simulation of
ERIK with both orientation and posture targets. Therefore we see that ERIK has performed better in solving the
orientation constraint even through it also had the posture goal. The DLS performed slightly below expectations, but
we must consider that the simulation attempted to orient the end-effector to a very large big range of orientations in
full 3D, i.e., pan, pitch and roll of the end-effector, towards the full vertical and horizontal 360°range. The DLS
results here have been corrected to match the number of samples of the ERIK one (which was also solved for each
posture), therefore presenting a comparable scale; otherwise considering only the range of orientation targets, the

DLS result would present far less samples and thus make these difficult to compare.

Results

Using ERIK, a total of 239 245 243 samples were simulated from 39 739 postures across all 7 skeletons. The DLS
was simulated for a total of 86 491 503 samples from 3789 postures using Skeleton C, in this case using three
different maximum iteration counts. However as explained in the previous section, the DLS results were further
filtered resulting in a total of 61 684 497 selected samples.

The simulations were ran on a high-performance computer cluster (HPCC) containing a mix of nodes with
AMD Opteron 6180 SE and 6344, and AMD EPYC 7401 CPUs, organized into nodes of either 48 or 96 CPUs. In
order to normalize and interpret the performance results from these simulations in comparison with a typical laptop
CPU, we have searched for single-core benchmarks of these CPUs on community-sourced benchmark websites. We
took as an example the Intel 17-7700HQ, which is a popular CPU, featured in many mid and high-end personal
laptops, and that is also at least 2 years old (launched Q1°2017) to represent an average laptop CPU. Despite the
multiprocessing capabilities of any of them, we were interested in the single-core performance, as each simulated
sample ran as a single-core process, and are also expected to run as such in a real-world application (even if it is
used within a multi-threaded/multi-core application, the IK engine per se should run sequentially in a single thread).

Table 6.7 shows the highest benchmark of each of these CPUs, using a Linux 64-bit system, as found on the

community-sourced Geekbench website!”. We consider these values to stand as an acceptable comparison of how

Yhttps://browser.geekbench.com/ (accessed January 12, 2019)

128

https://browser.geekbench.com/

Skeleton C - DLS100 nopost Skeleton C - ERIK

30000 1
240000 2
& S 20000 1
= =
220000 2100007
0 Il : | ol Ml ed i , ‘ ‘ ‘
0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.01 0.02 0.03 0.04 0.05 0.06
Orientation Error Measure Orientation Error Measure

(a) Orientation error histogram for skeleton C running ERIK compared to DLS100_nopost.

—— Skeleton C (ERIK) Skeleton C (DLS100_nopost) Error Threshold
Normal Distribution of Orientation Measure

40 -

Frequency
N w
o o

(=1
o
1

000 002 004 006 008 010 0.12
Orientation Error

(b) Normal distribution plots of the orientation error of ERIK compared to DLS100_nopost.

Figure 6.28: Comparison of orientation errors of ERIK on Skeleton C compared to DLS100_nopost after filtering
out samples with excessive orientation error in the latter.

the performance statistics collected through the HPCC compare to those of an average computer. By considering this
score instead of theoretical values such as MIPS or GFLOPS, we are also considering more of a general performance
capability without considering particular architecture-wise optimizations. For ERIK, all the simulations except the
largest one were arbitrarily assigned to an Opteron node, which leads us to consider an average of both those CPUs
for those simulations (these CPUs were distributed 50/50 among the total). The largest simulation, for Skeleton G,
was specifically assigned to an EPYC 7401 node. For DLS, the simulations were arbitrarily assigned to any of the
available nodes, being mostly attributed to an Opteron one. However in various cases the simulations were ran on
an EPYC node. As such, for the DLS simulations we consider the weighted average benchmark score for all nodes,

given that from a total of 672 CPUs, there were 192 EPYCs, and 240 of each of the Opteron types.

Table 6.7: A comparison of the single-core performance of the CPUs used in the HPCC for the simulations, and
how they related with the performance of a typical laptop CPU (ratio).

CPU Max Benchmark Score Ratio
Intel i7-7700HQ 5341 1.0000
AMD Opteron 6180 SE 1615 0.3024
AMD Opteron 6344 2233 0.4181
AMD EPYC 7401 3853 0.7214
AMD 6180 SE & 6344 average 1924 0.3602
ALL AMD - weighted average (4:5:5) 2475 0.4634

The statistics regarding the whole procedure are summarized in Table 6.8. This table contains the number of

postures and total samples ran for each skeleton (recall that each posture was simulated on 7609 target orientations).

129

It additionally contains various run-time statistics regarding the execution time to process a single sample (posture-
orientation pair), and on the number of iterations that were ran. The execution time presented was corrected based on
the ratios from Table 6.7 and therefore represent measured time - ratio in order to present all the statistics corrected
as if they had all been ran on an average computer (taking an Intel i7-7700HQ as example).

Table 6.8: Statistics regarding the evaluation experiments with a total of ~ 239M samples. Note that for the DLS

cases, we present the total number of postures simulated, but the number of samples corresponds to the result of
applying the filter explained in the previous section.

Skeleton Number of Iteration Count Time per Sample (ms)

DoFs Postures Samples Min Max Mean S.D. Min Max Mean S.D.

A 3 33 251 097 1 7 414 217 6 126 45 28

B 4 377 2 868 593 1 10 342 219 8 189 45 30

C 5 3789 28830501 1 12 231 2.08 6 1165 37 36
C-DLS100 5 3789 20561499 1 100 63 436 1.60 2112 167 121
C-DLS200 5 3789 20561499 1 200 120 92.8 1.57 3822 298 240
C-DLS400 5 3789 20561499 1 400 234 191.6 155 7520 678 570
D 5 3789 28830501 1 13 202 1.67 10 458 36 30

E 5 3789 28830501 1 12 193 1.78 6 225 28 27

F 6 8305 63192745 1 13 1.61 146 13 368 35 35

G 8 19657 149570113 1 11 135 102 22 759 74 63

Analysis of Results: ERIK

After running the simulations on the different skeletons, we collected all the data and plotted the histogram for
the error function and measures, as presented in Figure 6.30. Each line of the histogram figure represents an
embodiment, from skeleton A to G, as indicated in the titles of the individual graphs. The first column of graphs
contains the results for the value of the (combined) error function A, for each final solution. The second and third
columns of graphs contain the final error for the individual measures €opientation and €posture- At the top of the figures
matrix we have placed the Legend, which applies to all the graphs.

Each graph shows the distribution of the error for all the solutions. The vertical axis represents the total count
(frequency) of solutions that yielded a final error, given by the horizontal axis. Note also the dashed vertical
lines, which represent the intended maximum error (Apesholde), and also the solid vertical line, which aids in the
visualization of the data, by representing the maximum error produced within the graph’s samples. Note also that
the range of the horizontal axis (error range) is the same in all rows except for the shaded ones in the first row, and
that in the 5-link skeleton rows, each column presents the same Y value across all the three rows in order to help
comparing between these cases.

Plotting the normal distribution of the error function results for each skeleton, provides further support on the
interpretation of the results beyond the individual histograms, as illustrated in Figure 6.29. This figure shows the
normal distribution for the combined error and for each of the error measures, for each of the skeletons except for A,
which, due to its large error, disrupts the presentation of the others (and does not provide a significant interpretational
value). The general interpretation taken from the normal plots is that all skeletons performed well regarding the
Orientation Measure, and that the performance on the Posture Measure increased with the number of DoFs in the

skeleton. Detailed interpretations will follow below.

130

—— Skeleton B (4 DoFs) Skeleton C (5 DoFs) Skeleton D (5 DoFs) Skeleton E (5 DoFs) —— Skeleton F (6 DoFs) —— Skeleton G (8 DoFs) Error Threshold

Normal Distribution of Combined Error Normal Distribution of Orientation Measure Normal Distribution of Posture Measure
40 p

IS
=)

Frequency
N w
o o

Frequency
Noow
o o

Frequency

—
15}
-
5]

A~ O ;

0.00 0.02 0.04 006 0.08 010 012 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Combined Error Orientation Error Posture Error

o
o
o

Figure 6.29: Normal distribution plots of the final combined error and error-measures for each skeleton except
skeleton A.

Results for Skeleton A

These show that the target orientation goal failed immensely. This was highly expected given that the mechanical
limitations of its joints, with only one pitch joint, limited to [— 7, 7], would not allow it to aim at any orientations
below the horizon. We also see that the posture errors do not seem so bad - that is because being a single-segment
embodiment, the single and only posture it can perform is a straight line. Given that the whole corpus of experiment
data would also generate only straight postures to be tested, it ended up not performing so bad there. Despite that,
this case was meant to test if the algorithm reflected the expected results on such a constrained embodiment, with
nearly no possibility of performing expressive postures while aiming at a given direction. The results confirm our

hypothesis.

Results for Skeleton B

These show a substantial decrease in error compared to Skeleton A. By adding one more DoF, and allowing each
DoF to have a higher range of motion, the skeleton was able to aim even at orientations below the horizon, as can be
seen in its Orientation Error histogram, which always produced an error below the threshold. However, in order to
achieve all the target orientations, the posture goal was largely missed, as seen in its Posture Error histogram. The
normal plot shows that the error for Skeleton B (in red) was largely distributed beyond the specified threshold on the
Posture Measure, and consequently on the Combined Error. However the graph for the Orientation Measure shows
a good performance (its curve overlaps with the one of Skeleton C, in yellow). Still this skeleton does not represent
a useful use-case for ERIK - instead it provides further support over the validity of the algorithm and its evaluation,

as its bad results go in line with our expectation.

Results for Skeletons C, D, E

By adding another DoF, these results show lower error values compared to those of Skeleton B. We can note that
in particular, the maximum Posture Error has decreased, meaning that the extra DoF provided the character with
the ability to perform more expressive postures towards any direction. In C and E, some Orientation Error outliers
have however produced an error above the intended threshold. However, it seems that there were very few of these
situations, which makes them nearly imperceptible in the graph, if it wasn’t for the Highest Error line.

These skeletons start to yield results as we expect: to successfully orient to any given direction, while holding an
arbitrary expressive posture that is allowed to slightly distort in order to ensure the prioritized orientation constraint.

We take these conclusions from the Orientation Error histogram, which contains only some outliers beyond our

131

—— error < Threshold —— error > 3x Threshold

—— error < 2x Threshold ~ ---- Error Tolerance
error < 3x Threshold —— Highest Error
[Skeleton A, 3 links] Combined Error Histogram [Skeleton A, 3 links] Orientation Error Histogram [Skeleton A, 3 links] Posture Error Histogram
. 40009 7 10000 {7 7
i i 1 6000 1
S i > i > 1
= i 2 i 2 4000 1
' $2000 ! $ 5000 | 3
T ! = ! = !
|2 | o i 2 2000 i
= - | = H
| 0 | - il 0 Juud! ampn 0 A
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Error Function Result Orientation Error Measure Posture Error Measure
[Skeleton B, 4 links] Combined Error Histogram [Skeleton B, 4 links] Orientation Error Histogram [Skeleton B, 4 links] Posture Error Histogram
15000 T 40000 4000 f
£ 10000 f 2 2 ;
5] i [[} |
3 | 220000 22000]
9 5000 ! 9 9 !
i i i
o N L | o
0.00 002 0.04 006 008 010 0.12 000 002 004 006 008 010 0.12 000 002 004 006 008 010 0.12
Error Function Result Orientation Error Measure Posture Error Measure

(a) Results for skeletons A and B, the 3- and 4-link skeletons, which perform below expectations, but contribute to verify that the
algorithm results the expected results for those cases.

[Skeleton C, 5 links] Combined Error Histogram [Skeleton C, 5 links] Orientation Error Histogram 5000 [Skeleton C, 5 links] Posture Error Histogram
200000 i 75000 ! 3
g g | g 6000 |
] § 50000 i $ 1
“g). 100000 “g)_ “g)_ 4000 i
= &£ 25000 H & 2000
0 matall oLbay ! o
0.00 0.02 004 0.06 0.08 010 0.12 000 002 004 006 008 010 0.12 000 002 004 006 008 010 012
Error Function Result Orientation Error Measure Posture Error Measure
[Skeleton D, 5 links] Combined Error Histogram [Skeleton D, 5 links] Orientation Error Histogram 8000 [Skeleton D, 5 links] Posture Error Histogram
200000 75000 |
g E ‘_2 6000 |
o @ 50000 5] 1
4000 1
:’; 100000 ug:- % |
= & 25000 & 2000
0 olL® — 0
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Error Function Result Orientation Error Measure Posture Error Measure
[Skeleton E, 5 links] Combined Error Histogram [Skeleton E, 5 links] Orientation Error Histogram 5000 [Skeleton E, 5 links] Posture Error Histogram
200000 i 75000 | !
g i g 3 g 6000 i
% 100000 3 % 50000 %4000 3
2 | 2 25000 J + £ 2000
o 0 1 | 0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Error Function Result Orientation Error Measure Posture Error Measure

(b) Results for skeletons C, D and E, the three different 5-link skeletons, which start to yield satisfactory results.

[Skeleton F, 6 links] Combined Error Histogram [Skeleton F, 6 links] Orientation Error Histogram [Skeleton F, 6 links] Posture Error Histogram
-, 200000 i 5., 75000 -, 6000 |
2 i 2 1 2 |
2 100000 ; g 0000 | 34000 |
o 1 o 1 o !
@ i @ H @ [
2 1 2 25000 ; £ 2000
o 0L Hasens | 0
0.00 0.02 004 0.06 0.8 010 0.12 000 002 004 006 008 010 0.12 000 002 004 006 008 010 0.12
Error Function Result Orientation Error Measure Posture Error Measure
[Skeleton G, 8 links] Combined Error Histogram [Skeleton G, 8 links] Orientation Error Histogram [Skeleton G, 8 links] Posture Error Histogram
! 1500000 i 1500000 i
> 1500000 1 > 1 > 1
§ 1000000 i § 1000000 i § 1000000 i
B ' B i B '
o H o H o |
£ 500000 : 2 500000 : 2 500000 |
I i i
oL 4 oLt L [ES: -
0.00 002 0.04 006 008 010 0.12 0.00 002 004 006 008 010 0.12 0.00 002 004 006 008 010 0.12
Error Function Result Orientation Error Measure Posture Error Measure

(c) Results for skeletons F and G, the 6- and 8-link skeletons, which return the most satisfactory results.

Figure 6.30: Results of ERIK’s evaluation process. Each line corresponds to one of the seven skeletons used. The
columns correspond to each one’s Error Function result, Orientation Error and Posture Error. Please note that the
legend above the graphs applies to all of them.

132

given error threshold, and by the fact that the majority of the Posture Error is within the threshold, and that the ones
that were distorted beyond it are contained within at most 3x that threshold, with frequency decreasing as the error
increases.

Is is however interesting to perform a comparison between these three 5-link skeletons. Although they all have
the same number of DoFs, they are configured in different ways. As seen in Table 6.5, skeleton C has an YXXZY
configuration, while skeletons D and E use an YXZXY configuration. Furthermore, the angular limits of skeleton D
are [—, 7] while skeletons C and E have limits [~ 7, 7]. The normal plots make this comparison more explicit.
It becomes clear that from these three (C in yellow, D in green, E in cyan), all performed approximately well in
the Orientation Measure, with Skeleton D performing best in the Posture Measure and the Combined Error, where
Skeleton C performed worst. This draws the conclusion and illustrates that 1) a different joint configuration such as
between C and E affects the performance, with, in this case, the layout of E providing better expressive capabilities
than the one of C, while also showing, as expected, that by providing a wider range of motion, as in D versus E, that

D, the one with the wider motion, can also perform better.

Results for Skeleton F

By introducing just one additional DoF as compared to C, D and E, the algorithm increases its performance. It
is interesting here to compare in particular skeleton F to skeleton D, being that F has a lower angular range than
D, but an additional DoF. While it may seem unclear from the histograms which of the two performed best, the
normal plots does elucidate that Skeleton F performs better as seen in the normal distribution of the Combined Error,
and of the Posture Measure. Interestingly skeleton D performed better in the Orientation Measure, however both

performed within the threshold.

Results for Skeleton G

Finally, Skeleton G, with 8 links shows the best results as can be clearly seen in both the histograms and the normal
plots. Again, through the normal plots it is seen to be not the best performer on the Orientation Measure, however,
its ability to perform well on that measure, and perform exceptionally on the Posture Measure make it the best from

this case set.

Results Comparison

The results presented here confirm our initial hypothesis that, as long as an embodiment has enough DoFs, it is
able to use ERIK orient its endpoint towards any given target orientation, while successfully portraying a given
expressive posture with minimal disruption. We group the results in three groups. Skeletons A and B can be seen
as proofs of concepts, that serve to show that the algorithm fails when and how we expect it to fail (in highly
constrained skeletons, with very few DoFs). Skeletons C, D, E and F are representative of cases where the algorithm
starts to show positive results - with 5 or 6 DoFs it is mostly able to comply with all the constraints we have imposed,
such as the joint limits and the error threshold, when solving for an integrated posture-orientation goal. Finally,
skeleton F, with 8 DoFs already represents a case where the problem is solved in the most acceptable way, with both

error measures performing below the threshold for nearly all the tested samples.

133

Analysis of Results: ERIK vs DLS

The same procedure was followed for analysing the results of the DLS technique. Figure 6.31 shows the normal
distribution plots of the errors compared to the ones of ERIK with the same skeleton. Here we find that despite the
improvements, there was nearly no difference in the general distribution of the errors across the different variations
of DLS. In fact the three curves nearly overlap and become indistinguishable. We additionally detail the mean value
and standard deviation for each of the cases in Table 6.9, which shows that there was a very slight improvement in
the errors as the maximum number of iterations was increased.

In particular, and as we had already foreseen, ERIK performed better in achieving the correct target orientation.
What we were most interested in finding out was how the posture error of the DLS would perform. Here we find
similarly shaped curves for both ERIK and DLS, although ERIK’s curve is centred around a lower mean error, thus

revealing that it did in fact also perform better than DLS on solving the the posture target.

—— Skeleton C (5 DoFs) (ERIK) Skeleton C (5 DoFs) (DLS_EVAL100) Skeleton C (5 DoFs) (DLS_EVAL200) —— Skeleton C (5 DoFs) (DLS_EVAL400) Error Threshold

Normal Distribution of Combined Error Normal Distribution of Orientation Measure Normal Distribution of Posture Measure
20 40 20
15
> 5301 > 5
[®) v v
] 5 5
310 S 20 510
o o o
9 o o
i i i
5 104 5
/ J\
0 0 - 0
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.00 0.02 0.04 0.06 0.08 0.10
Combined Error Orientation Error Posture Error

Figure 6.31: Comparison of the normal distribution plots of the errors for each DLS version and for ERIK
Skeleton-C.

Combined Error Orientation Error Posture Error
Mean S.D. Mean S.D. Mean S.D.
ERIK 0.026614 0.021258 0.005819 0.009977 0.020795 0.021520
DLS100 0.087067 0.086930 0.052744 0.085997 0.034323 0.020593
DLS200 0.086973 0.086897 0.052652 0.085980 0.034321 0.020591
DLS400 0.086831 0.086581 0.052523 0.085669 0.034308 0.020579

Table 6.9: Mean value and Standard Deviation for the ERIK and DLS variants comparison.

6.3.11 Discussion

The ERIK technique is a promising new step in the field of character animation, especially for robots and other
interactive and immersive characters that are driven by Al. When driven by such Als, and/or subject to stimuli such
as user perception, it is important that the character animation engines for real-time, interactive characters, are able
to process the flow of information that arrives through its sensors, and use it to influence and drive the character’s
behavior and animation. Our work takes an important step in that direction as the results support our initial claim
that ERIK is able to provide expressive inverse kinematics solutions in real-time which simultaneously solve for an
expressive posture goal, and for a target orientational goal.

Aiming at characters that are driven in real-time, and need to be expressive while also using their body to
interact, such as gaze-tracking a person or object, ERIK succeeds in tackling both goals simultaneously for the
majority of the situations. It was expected that by having more DoFs in the embodiment, both goals could be solved

with lower error measures. In average, for a 5-link skeleton, the algorithm took 34ms to calculate a solution, and

134

74ms for a more complex 8-link skeleton, yielding a solution rate of 30 and 14 Hz respectively. While it would
be desirable to have higher performance rates, our own implementation has show it to be adequate for real-time
applications, as long as the IK solver is not synchronously running with the output module. By using the Nutty
Motion Filter on the output module to smoothly interpolate the IK solutions in real-time, we are able to achieve
smooth, sustained motion that can be used in such applications.

We have tested various skeleton configurations and ran extensive simulations in order to validate our claims. It
is arguable how such an evaluation should be performed, however, in order to provide a general view, we opted out
of evaluating the use of a robot using ERIK in a particular application with a smaller set of expressive postures, as
that would also confine the validity of any conclusions to that single embodiment and set of postures. We therefore
outlined the requirements that should be met by the algorithm to allow it to be used in any application, with any
posture and with an arbitrary skeleton layout. Instead of using a small set of animator-designed postures, we took a
sample of all the possible postures that each skeleton would allow to design. Instead of measuring how well a result
met an animator’s expectations (which is a subjective evaluation), we measured how close the resulting postures
were to the original posture in terms of shape, using a heuristic method (the Posture Measure). By ensuring that the
resulting posture is similar to the original, which in a real-world application, would be given by an animator, we
expect and claim that the animator would also find the resulting posture satisfactory.

We additionally compared the results of the ERIK simulations to the same simulations using the DLS technique
with postural control as the secondary task. Results showed that ERIK performed better in both the individual
orientation task and the posture task. We argue that the DLS simulations using the tested Skeleton C are prone to
kinematic singularities, which may have not been properly addressed. Therefore the result comparison was made
with a filtered version of the DLS results, in order to excluded samples that seemed excessively bad due to tha